Finding a best approximation pair of points for two polyhedra

Yair Censor
The University of Haifa, Haifa, Israel

A weekly webinar on "Projection Methods in Feasibility, Superiorization and Optimization Theory and Practice" organized by the division of Optimization of the Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern, Germany

Abstract

Given two disjoint convex polyhedra, we look for a best approximation pair relative to them, i.e., a pair of points, one in each polyhedron, attaining the minimum distance between the sets. Cheney and Goldstein [1] showed that alternating projections onto the two sets, starting from an arbitrary point, generate a sequence whose two interlaced subsequences converge to a best approximation pair. We propose in [2] a process based on projections onto the half-spaces defining the two polyhedra, which are more negotiable than projections on the polyhedra themselves. A central component in the proposed process is the Halpern-Lions-Wittmann-Bauschke (HLWB) algorithm for approaching the projection of a given point onto a convex set.

Based on joint work with Ron Aharoni and Zilin Jiang.

References

[1] W. Cheney and A. A. Goldstein, Proximity maps for convex sets, Proceedings of the American Mathematical Society, 10:448-450, 1959.
[2] R. Aharoni, Y. Censor and Z. Jiang, Finding a best approximation pair of points for two polyhedra, Computational Optimization and Applications, 71:509-523, 2018.

