On the Regularity of the Landweber Transform

Andrzej Cegielski (Zielona Góra, Poland)

A joint work with Simeon Reich and Rafał Zalas

The Second Fraunhofer Workshop on Projection Methods in Feasibility, Superiorization and Optimization - Theory and Practice

August, 26th, 2020

- Nonexpansive and Quasi-Nonexpansive Operators
- Split Feasibility Problem and the Landweber Transform
- 8 Regular Families of Sets and Regular Operators
- Properties of the Landweber Operator
- Segularity of the Landweber Operator
- Extrapolated Landweber Operator
- Projected Extrapolated Landweber Method
- Linear Split Feasibility Problem
- Interpolated Landweber Operator for Linear Inequalities

Nonexpansive and Quasi-Nonexpansive Operators

Definition

Let \mathcal{H} be a Hilbert space. We say that an operator $T : \mathcal{H} \to \mathcal{H}$ is:

nonexpansive (NE), if

$$\forall_{x,y\in\mathcal{H}} \quad \|Tx-Ty\| \leq \|x-y\|;$$

 α -averaged, $\alpha \in (0, 1)$, if $T = \alpha S + (1 - \alpha)$ Id for a NE operator S; firmly nonexpansive (FNE), if T is $\frac{1}{2}$ -averaged; quasi-nonexpansive (QNE), if

$$\forall_{x\in\mathcal{H},z\in\mathrm{Fix}\ T\neq\emptyset} \quad \|Tx-z\|\leq \|x-z\|;$$

 ρ -strongly quasi-nonexpansive (ρ -SQNE), where ρ > 0, if

$$\begin{aligned} \forall_{x \in \mathcal{H}, z \in \operatorname{Fix} T \neq \emptyset} & \|Tx - z\|^2 \le \|x - z\|^2 - \rho \|Tx - x\|^2; \\ \text{a cutter if} & \forall_{x \in \mathcal{H}, z \in \operatorname{Fix} T \neq \emptyset} & \langle z - Tx, x - Tx \rangle \le 0; \\ (\Leftrightarrow T \text{ is 1-SQNE}). \end{aligned}$$

Andrzej Cegielski (Zielona Góra, Poland), AOn the Regularity of the Landweber Transford 💦 Augus

Nonexpansive and Quasi-Nonexpansive Operators

 \mathcal{H}_1 and \mathcal{H}_2 - two real Hilbert spaces, $A: \mathcal{H}_1 \to \mathcal{H}_2$ a bounded linear operator. The *Split Feasibility Problem* (SFP) is to

find $x \in C$ such that $Ax \in Q$,

where $C \subseteq \mathcal{H}_1$ and $Q \subseteq \mathcal{H}_2$ are closed and convex.

SFP with $\mathcal{H}_1 = \mathbb{R}^n$ and $\mathcal{H}_2 = \mathbb{R}^m$ was introduced by Censor and Elfving in 1994.

In 2002 Byrne proposed the following *CQ-method* (in a finite dimensional case)

$$x^{k+1} = P_{\mathcal{C}}(x^k + \frac{\lambda}{\|\mathcal{A}\|^2} \mathcal{A}^{\mathcal{T}}(P_{\mathcal{Q}}\mathcal{A}x^k - \mathcal{A}x^k)),$$

where $\lambda \in (0, 2)$ and ||A|| is the spectral norm of A, and proved its convergence to

$$\operatorname{Argmin}_{x \in C} \frac{1}{2} \| P_Q(Ax) - Ax \|^2 \qquad (= \operatorname{Fix}(\operatorname{Id} + A^T(P_Q - \operatorname{Id})A)).$$

Andrzej Cegielski (Zielona Góra, Poland), 🗛 🗛 The Regularity of the Landweber Transfor 👘 👘 August, 26th, 2020

6 / 26

If $Q = \{b\} \subseteq \mathcal{H}_2$ then the SFP is to find $x \in C$ with Ax = b. In this case the *CQ*-method is called the *projected Landweber method*. Replace P_C and P_Q in the *CQ*-method by sequences of QNE operators S_k and T_k and the parameter λ by a sequence $\lambda_k \in (0, 1)$

$$x^{k+1} = S_k(x^k + \frac{\lambda_k}{\|A\|^2} A^*(T_k(Ax^k) - Ax^k)).$$
 (1)

We introduce a *Landweber transform* denoted by $\mathcal{L}_{\mathcal{A}}\{\cdot\}$ or shortly $\mathcal{L}\{\cdot\}$, which for a given operator $T : \mathcal{H}_2 \to \mathcal{H}_2$ assigns an operator $\mathcal{L}\{T\} : \mathcal{H}_1 \to \mathcal{H}_1$ defined by

$$\mathcal{L}_{A}\lbrace T\rbrace := \mathrm{Id} + \frac{1}{\Vert A \Vert^{2}} A^{*} (T - \mathrm{Id}) A$$

which we call a Landweber operator (related to T). Denoting $U_{\lambda} := \mathrm{Id} + \lambda(U - \mathrm{Id}) - \text{the } \lambda$ -relaxation of U, we write (1) as:

$$x^{k+1} = S_k \mathcal{L}\{(T_k)_{\lambda_k}\}$$

Onvergence in finite dimensional setting:

Convergence in finite dimensional setting:
 (a) Byrne, 2002: x^{k+1} = P_C L{(P_Q)_λ}x^k;

Onvergence in finite dimensional setting:

(a) Byrne, 2002: $x^{k+1} = P_{\mathcal{C}} \mathcal{L}\{(P_{Q})_{\lambda}\}x^{k};$

(b) Yang, 2004: $x^{k+1} = P_c \mathcal{L}\{(P_q)_{\lambda}\}x^k$, P_c , P_q – subgradient projections;

Onvergence in finite dimensional setting:

(a) Byrne, 2002: $x^{k+1} = P_C \mathcal{L}\{(P_Q)_{\lambda}\}x^k;$

- (b) Yang, 2004: $x^{k+1} = P_c \mathcal{L}\{(P_q)_{\lambda}\}x^k$, P_c , P_q subgradient projections;
- (c) Censor–Segal, 2009: $x^{k+1} = S\mathcal{L}\{T_{\lambda}\}x^k$, S, T cutters satisfying the closedness principle;

Onvergence in finite dimensional setting:

(a) Byrne, 2002: $x^{k+1} = P_{\mathcal{C}} \mathcal{L}\{(P_Q)_{\lambda}\}x^k$;

- (b) Yang, 2004: $x^{k+1} = P_c \mathcal{L}\{(P_q)_{\lambda}\}x^k$, P_c , P_q subgradient projections;
- (c) Censor–Segal, 2009: $x^{k+1} = S\mathcal{L}\{T_{\lambda}\}x^k$, S, T cutters satisfying the closedness principle;
- Weak convergence in infinite dimensional setting;

Onvergence in finite dimensional setting:

(a) Byrne, 2002: $x^{k+1} = P_{\mathcal{C}} \mathcal{L}\{(P_Q)_{\lambda}\}x^k$;

- (b) Yang, 2004: $x^{k+1} = P_c \mathcal{L}\{(P_q)_{\lambda}\}x^k$, P_c , P_q subgradient projections;
- (c) Censor–Segal, 2009: $x^{k+1} = S\mathcal{L}\{T_{\lambda}\}x^{k}$, S, T cutters satisfying the closedness principle;

Weak convergence in infinite dimensional setting;

(d) Xu, 2010: $x^{k+1} = P_c \mathcal{L}\{(P_q)_{\lambda}\}x^k$, P_c , P_q – subgradient projections;

• Convergence in finite dimensional setting:

- (a) Byrne, 2002: $x^{k+1} = P_{\mathcal{C}} \mathcal{L}\{(P_Q)_{\lambda}\} x^k$;
- (b) Yang, 2004: $x^{k+1} = P_c \mathcal{L}\{(P_q)_{\lambda}\}x^k$, P_c , P_q subgradient projections;
- (c) Censor–Segal, 2009: $x^{k+1} = S\mathcal{L}\{T_{\lambda}\}x^k$, S, T cutters satisfying the closedness principle;

Weak convergence in infinite dimensional setting;

- (d) Xu, 2010: $x^{k+1} = P_c \mathcal{L}\{(P_q)_{\lambda}\}x^k$, P_c , P_q subgradient projections;
- (e) Moudafi, 2010: $x^{k+1} = S_{\mu_k} \mathcal{L} \{ T_{\lambda} \} x^k$, μ_k , $\lambda \in [\varepsilon, 1-\varepsilon]$, S, T QNE satisfying the demi-closedness principle;

• Convergence in finite dimensional setting:

- (a) Byrne, 2002: $x^{k+1} = P_{\mathcal{C}} \mathcal{L}\{(P_Q)_{\lambda}\}x^k$;
- (b) Yang, 2004: $x^{k+1} = P_c \mathcal{L}\{(P_q)_{\lambda}\}x^k$, P_c , P_q subgradient projections;
- (c) Censor–Segal, 2009: $x^{k+1} = S\mathcal{L}\{T_{\lambda}\}x^k$, S, T cutters satisfying the closedness principle;

Weak convergence in infinite dimensional setting;

- (d) Xu, 2010: $x^{k+1} = P_c \mathcal{L}\{(P_q)_{\lambda}\}x^k$, P_c , P_q subgradient projections;
- (e) Moudafi, 2010: $x^{k+1} = S_{\mu_k} \mathcal{L} \{ T_{\lambda} \} x^k$, μ_k , $\lambda \in [\varepsilon, 1-\varepsilon]$, S, T QNE satisfying the demi-closedness principle;
- (f) Wang-Xu, 2011: $C = \bigcap_{i=1}^{m} \operatorname{Fix} U_i$, $Q = \bigcap_{i=1}^{m} \operatorname{Fix} V_i$, U_i , V_i cutters satisfying the DC principle, $x^{k+1} = U_{[k]} \mathcal{L}\{(V_{[k]})_{\lambda}\}x^k$ (a cyclic control);

Onvergence in finite dimensional setting:

- (a) Byrne, 2002: $x^{k+1} = P_{\mathcal{C}} \mathcal{L}\{(P_Q)_{\lambda}\}x^k$;
- (b) Yang, 2004: $x^{k+1} = P_c \mathcal{L}\{(P_q)_{\lambda}\}x^k$, P_c , P_q subgradient projections;
- (c) Censor–Segal, 2009: $x^{k+1} = S\mathcal{L}\{T_{\lambda}\}x^k$, S, T cutters satisfying the closedness principle;

Weak convergence in infinite dimensional setting;

- (d) Xu, 2010: $x^{k+1} = P_c \mathcal{L}\{(P_q)_{\lambda}\}x^k$, P_c , P_q subgradient projections;
- (e) Moudafi, 2010: $x^{k+1} = S_{\mu_k} \mathcal{L} \{ T_{\lambda} \} x^k$, μ_k , $\lambda \in [\varepsilon, 1-\varepsilon]$, S, T QNE satisfying the demi-closedness principle;
- (f) Wang-Xu, 2011: $C = \bigcap_{i=1}^{m} \operatorname{Fix} U_i$, $Q = \bigcap_{i=1}^{m} \operatorname{Fix} V_i$, U_i , V_i cutters satisfying the DC principle, $x^{k+1} = U_{[k]} \mathcal{L}\{(V_{[k]})_{\lambda}\}x^k$ (a cyclic control);
- (h) Lopez–Martín-Márquez–Wang–Xu, 2012: extrapolated version of (d);

Onvergence in finite dimensional setting:

- (a) Byrne, 2002: $x^{k+1} = P_{\mathcal{C}} \mathcal{L}\{(P_Q)_{\lambda}\}x^k$;
- (b) Yang, 2004: $x^{k+1} = P_c \mathcal{L}\{(P_q)_{\lambda}\}x^k$, P_c , P_q subgradient projections;
- (c) Censor–Segal, 2009: $x^{k+1} = S\mathcal{L}\{T_{\lambda}\}x^k$, S, T cutters satisfying the closedness principle;

Weak convergence in infinite dimensional setting;

- (d) Xu, 2010: $x^{k+1} = P_c \mathcal{L}\{(P_q)_{\lambda}\}x^k$, P_c , P_q subgradient projections;
- (e) Moudafi, 2010: $x^{k+1} = S_{\mu_k} \mathcal{L} \{ T_{\lambda} \} x^k$, μ_k , $\lambda \in [\varepsilon, 1-\varepsilon]$, S, T QNE satisfying the demi-closedness principle;
- (f) Wang-Xu, 2011: $C = \bigcap_{i=1}^{m} \operatorname{Fix} U_i$, $Q = \bigcap_{i=1}^{m} \operatorname{Fix} V_i$, U_i , V_i cutters satisfying the DC principle, $x^{k+1} = U_{[k]} \mathcal{L}\{(V_{[k]})_{\lambda}\}x^k$ (a cyclic control);
- (h) Lopez-Martín-Márquez-Wang-Xu, 2012: extrapolated version of (d);
- (i) C., 2015: general method (with almost cyclic or intermittent control);

向下 イヨト イヨト ニヨ

Onvergence in finite dimensional setting:

- (a) Byrne, 2002: $x^{k+1} = P_C \mathcal{L}\{(P_Q)_{\lambda}\}x^k;$
- (b) Yang, 2004: $x^{k+1} = P_c \mathcal{L}\{(P_q)_{\lambda}\}x^k$, P_c , P_q subgradient projections;
- (c) Censor–Segal, 2009: $x^{k+1} = S\mathcal{L}\{T_{\lambda}\}x^k$, S, T cutters satisfying the closedness principle;

Weak convergence in infinite dimensional setting;

- (d) Xu, 2010: $x^{k+1} = P_c \mathcal{L}\{(P_q)_{\lambda}\}x^k$, P_c , P_q subgradient projections;
- (e) Moudafi, 2010: $x^{k+1} = S_{\mu_k} \mathcal{L} \{ T_{\lambda} \} x^k$, μ_k , $\lambda \in [\varepsilon, 1-\varepsilon]$, S, T QNE satisfying the demi-closedness principle;
- (f) Wang-Xu, 2011: $C = \bigcap_{i=1}^{m} \operatorname{Fix} U_i$, $Q = \bigcap_{i=1}^{m} \operatorname{Fix} V_i$, U_i , V_i cutters satisfying the DC principle, $x^{k+1} = U_{[k]} \mathcal{L}\{(V_{[k]})_{\lambda}\}x^k$ (a cyclic control);
- (h) Lopez–Martín-Márquez–Wang–Xu, 2012: extrapolated version of (d);
- (i) C., 2015: general method (with almost cyclic or intermittent control);
- (j) C., 2016: $x^{k+1} = S_k \mathcal{L}_{\sigma_k(x^k)}\{(T_k)_\lambda\}(x^k)$ extrapolated version of (e);

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Onvergence in finite dimensional setting:

- (a) Byrne, 2002: $x^{k+1} = P_C \mathcal{L}\{(P_Q)_{\lambda}\}x^k$;
- (b) Yang, 2004: $x^{k+1} = P_c \mathcal{L}\{(P_q)_{\lambda}\}x^k$, P_c , P_q subgradient projections;
- (c) Censor–Segal, 2009: $x^{k+1} = S\mathcal{L}\{T_{\lambda}\}x^{k}$, S, T cutters satisfying the closedness principle;

Weak convergence in infinite dimensional setting;

- (d) Xu, 2010: $x^{k+1} = P_c \mathcal{L}\{(P_q)_{\lambda}\}x^k$, P_c , P_q subgradient projections;
- (e) Moudafi, 2010: $x^{k+1} = S_{\mu_k} \mathcal{L} \{ T_{\lambda} \} x^k$, μ_k , $\lambda \in [\varepsilon, 1-\varepsilon]$, S, T QNE satisfying the demi-closedness principle;
- (f) Wang-Xu, 2011: $C = \bigcap_{i=1}^{m} \operatorname{Fix} U_i$, $Q = \bigcap_{i=1}^{m} \operatorname{Fix} V_i$, U_i , V_i cutters satisfying the DC principle, $x^{k+1} = U_{[k]} \mathcal{L}\{(V_{[k]})_{\lambda}\}x^k$ (a cyclic control);
- (h) Lopez-Martín-Márquez-Wang-Xu, 2012: extrapolated version of (d);
- (i) C., 2015: general method (with almost cyclic or intermittent control);
- (j) C., 2016: $x^{k+1} = S_k \mathcal{L}_{\sigma_k(x^k)}\{(T_k)_\lambda\}(x^k)$ extrapolated version of (e);

C.-Reich-Zalas, 2020: Conditions for the weak / strong /linear convergence.

Andrzej Cegielski (Zielona Góra, Poland), ${\sf AOn}$ the Regularity of the Landweber Transf

Definition (Bauschke-Borwein, 1996)

• Let C be a family of closed convex subsets $C_i \subseteq H$, $i \in I := \{1, 2, ..., m\}$, with $C := \bigcap_{i \in I} C_i \neq \emptyset$. We say that C is:

Definition (Bauschke-Borwein, 1996)

• Let C be a family of closed convex subsets $C_i \subseteq H$, $i \in I := \{1, 2, ..., m\}$, with $C := \bigcap_{i \in I} C_i \neq \emptyset$. We say that C is:

• (boundedly) regular if for any (bounded) sequence $\{x^k\}_{k=0}^{\infty}$

$$\lim_{k} \max_{i \in I} d(x^{k}, C_{i}) = 0 \Longrightarrow \lim_{k} d(x^{k}, C) = 0;$$

Definition (Bauschke-Borwein, 1996)

• Let C be a family of closed convex subsets $C_i \subseteq H$, $i \in I := \{1, 2, ..., m\}$, with $C := \bigcap_{i \in I} C_i \neq \emptyset$. We say that C is:

• (*boundedly*) *regular* if for any (bounded) sequence $\{x^k\}_{k=0}^{\infty}$

$$\lim_{k} \max_{i \in I} d(x^{k}, C_{i}) = 0 \Longrightarrow \lim_{k} d(x^{k}, C) = 0;$$

(*boundedly*) *linearly regular* if (for any bounded *D* ⊆ *H*) there is a constant *κ* > 0 such that for every *x*(∈ *D*)

$$d(x, C) \leq \kappa \max_{i \in I} d(x, C_i).$$

9 / 26

Definition (Bauschke-Borwein, 1996)

• Let C be a family of closed convex subsets $C_i \subseteq H$, $i \in I := \{1, 2, ..., m\}$, with $C := \bigcap_{i \in I} C_i \neq \emptyset$. We say that C is:

• (*boundedly*) *regular* if for any (bounded) sequence $\{x^k\}_{k=0}^{\infty}$

$$\lim_{k} \max_{i \in I} d(x^{k}, C_{i}) = 0 \Longrightarrow \lim_{k} d(x^{k}, C) = 0;$$

(*boundedly*) *linearly regular* if (for any bounded *D* ⊆ *H*) there is a constant *κ* > 0 such that for every *x*(∈ *D*)

$$d(x, C) \leq \kappa \max_{i \in I} d(x, C_i).$$

• Let $C_i \subseteq \mathcal{H}$, $i \in I := \{1, ..., m\}$, be closed convex with $C := \bigcap_{i \in I} C_i \neq \emptyset$ and let $C := \{C_i \mid i \in I\}$.

A B F A B F

Definition (Bauschke-Borwein, 1996)

• Let *C* be a family of closed convex subsets $C_i \subseteq \mathcal{H}$, $i \in I := \{1, 2, ..., m\}$, with $C := \bigcap_{i \in I} C_i \neq \emptyset$. We say that *C* is:

• (boundedly) regular if for any (bounded) sequence $\{x^k\}_{k=0}^{\infty}$

$$\lim_{k} \max_{i \in I} d(x^{k}, C_{i}) = 0 \Longrightarrow \lim_{k} d(x^{k}, C) = 0;$$

(*boundedly*) *linearly regular* if (for any bounded *D* ⊆ *H*) there is a constant *κ* > 0 such that for every *x*(∈ *D*)

$$d(x, C) \leq \kappa \max_{i \in I} d(x, C_i).$$

Let C_i ⊆ H, i ∈ I := {1,..., m}, be closed convex with C := ∩_{i∈I} C_i ≠ Ø and let C := {C_i | i ∈ I}.
If dim H < ∞, then C is boundedly regular;

(B)

Definition (Bauschke-Borwein, 1996)

• Let C be a family of closed convex subsets $C_i \subseteq H$, $i \in I := \{1, 2, ..., m\}$, with $C := \bigcap_{i \in I} C_i \neq \emptyset$. We say that C is:

• (boundedly) regular if for any (bounded) sequence $\{x^k\}_{k=0}^{\infty}$

$$\lim_{k} \max_{i \in I} d(x^{k}, C_{i}) = 0 \Longrightarrow \lim_{k} d(x^{k}, C) = 0;$$

(*boundedly*) *linearly regular* if (for any bounded *D* ⊆ *H*) there is a constant *κ* > 0 such that for every *x*(∈ *D*)

$$d(x, C) \leq \kappa \max_{i \in I} d(x, C_i).$$

Let C_i ⊆ H, i ∈ I := {1,..., m}, be closed convex with C := ∩_{i∈I} C_i ≠ Ø and let C := {C_i | i ∈ I}.
If dim H < ∞, then C is boundedly regular;
If all C_i, i ∈ I, are half-spaces, then C is linearly regular;

Definition

• We say that a quasi-nonexpansive operator $T: \mathcal{H} \to \mathcal{H}$ is:

∢ ∃ ▶

Definition

- We say that a quasi-nonexpansive operator $T: \mathcal{H} \to \mathcal{H}$ is:
 - *weakly regular* if for any sequence $\{x^k\}_{k=0}^{\infty}$ and $\{n_k\}_{k=0}^{\infty} \subseteq \{k\}_{k=0}^{\infty}$

$$\begin{cases} x^{n_k} \rightharpoonup y \\ \|Tx^k - x^k\| \to 0 \end{cases} \implies y \in \operatorname{Fix} T;$$

Definition

- We say that a quasi-nonexpansive operator $T: \mathcal{H} \to \mathcal{H}$ is:
 - *weakly regular* if for any sequence $\{x^k\}_{k=0}^{\infty}$ and $\{n_k\}_{k=0}^{\infty} \subseteq \{k\}_{k=0}^{\infty}$

$$\begin{cases} x^{n_k} \rightharpoonup y \\ \|Tx^k - x^k\| \to 0 \end{cases} \implies y \in \operatorname{Fix} T;$$

• (*boundedly*) *regular* if for any (bounded) sequence $\{x^k\}_{k=0}^{\infty}$

$$\lim_{k\to\infty} \|Tx^k - x^k\| = 0 \implies \lim_{k\to\infty} d(x^k, \operatorname{Fix} T) = 0;$$

Definition

- We say that a quasi-nonexpansive operator $T: \mathcal{H} \to \mathcal{H}$ is:
 - *weakly regular* if for any sequence $\{x^k\}_{k=0}^{\infty}$ and $\{n_k\}_{k=0}^{\infty} \subseteq \{k\}_{k=0}^{\infty}$

$$\begin{cases} x^{n_k} \rightharpoonup y \\ \|Tx^k - x^k\| \to 0 \end{cases} \implies y \in \operatorname{Fix} T;$$

• (boundedly) regular if for any (bounded) sequence $\{x^k\}_{k=0}^{\infty}$

$$\lim_{k\to\infty} \|Tx^k - x^k\| = 0 \implies \lim_{k\to\infty} d(x^k, \operatorname{Fix} T) = 0;$$

• (boundedly) linearly regular if (for any bounded $D \subseteq \mathcal{H}$) there is $\delta > 0$ such that for all $x \in D$)

$$d(x, \operatorname{Fix} T) \leq \delta \| Tx - x \|.$$

10 / 26

Andrzej Cegielski (Zielona Góra, Poland), AOn the Regularity of the Landweber Transfor August, 26th, 2020

Definition

- We say that a quasi-nonexpansive operator $T: \mathcal{H} \to \mathcal{H}$ is:
 - *weakly regular* if for any sequence $\{x^k\}_{k=0}^{\infty}$ and $\{n_k\}_{k=0}^{\infty} \subseteq \{k\}_{k=0}^{\infty}$

$$\begin{cases} x^{n_k} \rightharpoonup y \\ \|Tx^k - x^k\| \to 0 \end{cases} \implies y \in \operatorname{Fix} T;$$

• (boundedly) regular if for any (bounded) sequence $\{x^k\}_{k=0}^{\infty}$

$$\lim_{k\to\infty} \|Tx^k - x^k\| = 0 \implies \lim_{k\to\infty} d(x^k, \operatorname{Fix} T) = 0;$$

• (boundedly) linearly regular if (for any bounded $D \subseteq \mathcal{H}$) there is $\delta > 0$ such that for all $x \in D$)

$$d(x, \operatorname{Fix} T) \leq \delta \| Tx - x \|.$$

• The metric projection P_C is linearly regular.

• Why the notion of regularity of operators is important?

Theorem

Andrzej Cegielski (Zielona Góra, Poland), AOn the Regularity of the Landweber Transford August, 26th, 2020

11 / 26

• Why the notion of regularity of operators is important?

Theorem

• Let $U: \mathcal{H} \to \mathcal{H}$ be strongly quasi-nonexpansive, $x^0 \in \mathcal{H}$ and

$$x^{k+1} := Ux^k$$
, $k \ge 0$.

• Why the notion of regularity of operators is important?

Theorem

• Let $U: \mathcal{H} \to \mathcal{H}$ be strongly quasi-nonexpansive, $x^0 \in \mathcal{H}$ and

$$x^{k+1}:=Ux^k$$
, $k\geq 0$.

• If U is weakly regular, then x^k converges weakly to some $x^* \in Fix U$.

• Why the notion of regularity of operators is important?

Theorem

• Let $U: \mathcal{H} \to \mathcal{H}$ be strongly quasi-nonexpansive, $x^0 \in \mathcal{H}$ and

$$x^{k+1}:=Ux^k, k\geq 0.$$

If U is weakly regular, then x^k converges weakly to some x^{*} ∈ Fix U.
If U is boundedly regular, then the convergence to x^{*} is in norm.

• Why the notion of regularity of operators is important?

Theorem

• Let $U: \mathcal{H} \to \mathcal{H}$ be strongly quasi-nonexpansive, $x^0 \in \mathcal{H}$ and

$$x^{k+1}:=Ux^k, k\geq 0.$$

If U is weakly regular, then x^k converges weakly to some x* ∈ Fix U.
If U is boundedly regular, then the convergence to x* is in norm.
If U is boundedly linearly regular, then the convergence is linear.

• Why the notion of regularity of operators is important?

Theorem

• Let $U: \mathcal{H} \to \mathcal{H}$ be strongly quasi-nonexpansive, $x^0 \in \mathcal{H}$ and

$$x^{k+1}:=Ux^k, k\geq 0.$$

- If U is weakly regular, then x^k converges weakly to some $x^* \in Fix U$.
- If U is boundedly regular, then the convergence to x^* is in norm.
- If U is boundedly linearly regular, then the convergence is linear.
- The theorem is also true if we replace *U* by a sequence of operators U_k . In this case one should define a (weakly, linearly) regular sequence operators.

11 / 26
$$\mathcal{L}{T} := \mathrm{Id} + \frac{1}{\|A\|^2} A^* (T - \mathrm{Id}) A$$

• Fix $\mathcal{L}{T} \supseteq A^{-1}(\text{Fix } T);$

Andrzej Cegielski (Zielona Góra, Poland), A $_{
m On}$ the Regularity of the Landweber Transford August, 26th, 2020 12 / 26

$$\mathcal{L}{T} := \mathrm{Id} + \frac{1}{\|A\|^2} A^* (T - \mathrm{Id}) A$$

• Fix
$$\mathcal{L}{T} \supseteq A^{-1}(\text{Fix } T);$$

• $\mathcal{L}_{\lambda}{T} = \mathcal{L}{T_{\lambda}};$

3 x 3

$$\mathcal{L}{T} := \mathrm{Id} + \frac{1}{\|A\|^2} A^* (T - \mathrm{Id}) A$$

• Fix
$$\mathcal{L}{T} \supseteq A^{-1}(\text{Fix } T);$$

• $\mathcal{L}_{\lambda}{T} = \mathcal{L}{T_{\lambda}};$
• $\mathcal{L}{\sum_{i=1}^{m} \omega_i T_i} = \sum_{i=1}^{m} \omega_i \mathcal{L}{T_i};$

э

$$\mathcal{L}{T} := \mathrm{Id} + \frac{1}{\|A\|^2} A^* (T - \mathrm{Id}) A$$

• Fix
$$\mathcal{L}{T} \supseteq A^{-1}(\text{Fix } T);$$

•
$$\mathcal{L}_{\lambda}\{T\} = \mathcal{L}\{T_{\lambda}\};$$

•
$$\mathcal{L}\{\sum_{i=1}^{m}\omega_{i}T_{i}\}=\sum_{i=1}^{m}\omega_{i}\mathcal{L}\{T_{i}\};$$

3 x 3

$$\mathcal{L}{T} := \mathrm{Id} + \frac{1}{\|A\|^2} A^* (T - \mathrm{Id}) A$$

• Fix
$$\mathcal{L}{T} \supseteq A^{-1}(\text{Fix } T);$$

•
$$\mathcal{L}_{\lambda}\{T\} = \mathcal{L}\{T_{\lambda}\};$$

•
$$\mathcal{L}\{\sum_{i=1}^{m}\omega_{i}T_{i}\}=\sum_{i=1}^{m}\omega_{i}\mathcal{L}\{T_{i}\};$$

- If T is NE then $\mathcal{L}{T}$ is also NE;
- (C., 2016) If T is α -averaged then $\mathcal{L}{T}$ is also α -averaged;

$$\mathcal{L}{T} := \mathrm{Id} + \frac{1}{\|A\|^2} A^* (T - \mathrm{Id}) A$$

• Fix
$$\mathcal{L}{T} \supseteq A^{-1}(\text{Fix } T);$$

•
$$\mathcal{L}_{\lambda}\{T\} = \mathcal{L}\{T_{\lambda}\};$$

•
$$\mathcal{L}\{\sum_{i=1}^{m}\omega_{i}T_{i}\}=\sum_{i=1}^{m}\omega_{i}\mathcal{L}\{T_{i}\};$$

- If T is NE then $\mathcal{L}{T}$ is also NE;
- (C., 2016) If T is α -averaged then $\mathcal{L}{T}$ is also α -averaged;
- (Wang-Xu, 2011, C., 2015) Let T be ρ -SQNE, where $\rho \ge 0$, and im $A \cap \text{Fix } T \neq \emptyset$.

12 / 26

$$\mathcal{L}{T} := \mathrm{Id} + \frac{1}{\|A\|^2} A^* (T - \mathrm{Id}) A$$

• Fix
$$\mathcal{L}{T} \supseteq A^{-1}(\text{Fix } T);$$

•
$$\mathcal{L}_{\lambda}\{T\} = \mathcal{L}\{T_{\lambda}\};$$

•
$$\mathcal{L}\{\sum_{i=1}^{m}\omega_{i}T_{i}\}=\sum_{i=1}^{m}\omega_{i}\mathcal{L}\{T_{i}\};$$

- If T is NE then $\mathcal{L}{T}$ is also NE;
- (C., 2016) If T is α -averaged then $\mathcal{L}{T}$ is also α -averaged;
- (Wang-Xu, 2011, C., 2015) Let T be ρ -SQNE, where $\rho \ge 0$, and im $A \cap \text{Fix } T \neq \emptyset$.

12 / 26

• Then $\mathcal{L}{T}$ is also ρ -SQNE and Fix $\mathcal{L}{T} = A^{-1}(\text{Fix } T)$.

$$\mathcal{L}{T} := \mathrm{Id} + \frac{1}{\|A\|^2} A^* (T - \mathrm{Id}) A$$

• Fix
$$\mathcal{L}{T} \supseteq A^{-1}(\text{Fix } T);$$

•
$$\mathcal{L}_{\lambda}\{T\} = \mathcal{L}\{T_{\lambda}\};$$

•
$$\mathcal{L}\{\sum_{i=1}^{m}\omega_{i}T_{i}\}=\sum_{i=1}^{m}\omega_{i}\mathcal{L}\{T_{i}\};$$

- If T is NE then $\mathcal{L}{T}$ is also NE;
- (C., 2016) If T is α -averaged then $\mathcal{L}{T}$ is also α -averaged;
- (Wang-Xu, 2011, C., 2015) Let T be ρ -SQNE, where $\rho \ge 0$, and im $A \cap \text{Fix } T \neq \emptyset$.

12 / 26

- Then $\mathcal{L}{T}$ is also ρ -SQNE and Fix $\mathcal{L}{T} = A^{-1}(\text{Fix } T)$.
- In particular, if T is a cutter then $\mathcal{L}{T}$ is also a cutter.

Theorem

Let A: H₁ → H₂ be nonzero bounded linear, T: H₂ → H₂ be QNE with im A ∩ Fix T ≠ Ø, and L{T}: H₁ → H₁ be the Ladweber operator, defined by

$$\mathcal{L}{T} = \mathrm{Id} + \frac{1}{\|A\|^2} A^*(T - \mathrm{Id})A.$$

Andrzej Cegielski (Zielona Góra, Poland), 🗚 🗛 the Regularity of the Landweber Transford 💦 August, 26th, 2020

Theorem

Let A: H₁ → H₂ be nonzero bounded linear, T: H₂ → H₂ be QNE with im A ∩ Fix T ≠ Ø, and L{T}: H₁ → H₁ be the Ladweber operator, defined by

$$\mathcal{L}{T} = \mathrm{Id} + \frac{1}{\|A\|^2} A^*(T - \mathrm{Id})A.$$

 (Wang-Xu, 2011, C., 2015) If T is weakly regular, then the Ladweber operator L{T} is weakly regular.

Theorem

Let A: H₁ → H₂ be nonzero bounded linear, T: H₂ → H₂ be QNE with im A ∩ Fix T ≠ Ø, and L{T}: H₁ → H₁ be the Ladweber operator, defined by

$$\mathcal{L}{T} = \mathrm{Id} + \frac{1}{\|A\|^2} A^*(T - \mathrm{Id})A.$$

- (Wang-Xu, 2011, C., 2015) If T is weakly regular, then the Ladweber operator L{T} is weakly regular.
- Suppose that A has closed range

Theorem

Let A: H₁ → H₂ be nonzero bounded linear, T: H₂ → H₂ be QNE with im A ∩ Fix T ≠ Ø, and L{T}: H₁ → H₁ be the Ladweber operator, defined by

$$\mathcal{L}{T} = \mathrm{Id} + \frac{1}{\|A\|^2} A^*(T - \mathrm{Id})A.$$

- (Wang-Xu, 2011, C., 2015) If T is weakly regular, then the Ladweber operator L{T} is weakly regular.
- Suppose that A has closed range
 - (C.-Reich-Zalas, 2020) If T is boundedly regular and {im A, Fix T} is boundedly regular, then $\mathcal{L}{T}$ is boundedly regular.

Theorem

Let A: H₁ → H₂ be nonzero bounded linear, T: H₂ → H₂ be QNE with im A ∩ Fix T ≠ Ø, and L{T}: H₁ → H₁ be the Ladweber operator, defined by

$$\mathcal{L}\lbrace T\rbrace = \mathrm{Id} + \frac{1}{\|A\|^2} A^* (T - \mathrm{Id}) A.$$

• (Wang-Xu, 2011, C., 2015) If T is weakly regular, then the Ladweber operator $\mathcal{L}\{T\}$ is weakly regular.

• Suppose that A has closed range

- (C.-Reich-Zalas, 2020) If T is boundedly regular and {im A, Fix T} is boundedly regular, then $\mathcal{L}{T}$ is boundedly regular.
- (C.-Reich-Zalas, 2020) If T is boundedly linearly regular and $\{im A, Fix T\}$ is boundedly linearly regular, then $\mathcal{L}\{T\}$ is boundedly linearly regular.

Extrapolated Landweber Operator

Let $T: \mathcal{H}_2 \to \mathcal{H}_2$, and $\sigma: \mathcal{H}_1 \to [1, \infty)$ be an *extrapolation function*.

Definition

The operator \mathcal{L}_{σ} {*T*} : $\mathcal{H}_1 \rightarrow \mathcal{H}_1$, defined by

$$\mathcal{L}_{\sigma}\{T\}x := x + \sigma(x)(\mathcal{L}\{T\}x - x),$$
(2)

is called an *extrapolated Landweber operator* (related to σ).

Theorem (C., 2016, C.-Reich-Zalas, 2020)

Let T be QNE, Fix $\mathcal{L}{T} \neq \emptyset$ and the extrapolation function σ satisfies

$$\sigma(x) \le \frac{\|A\|^2 \cdot \|T(Ax) - Ax\|^2}{\|A^*(T(Ax) - Ax)\|^2} \text{ for all } x \in \mathcal{H}_1$$
(3)

Then $\mathcal{L}_{\sigma}\{T\}$ is QNE. Conditions for weak/strong/linear regularity of $\mathcal{L}_{\sigma}\{T\}$ are similar to those of $\mathcal{L}\{T\}$.

Andrzej Cegielski (Zielona Góra, Poland), ${\sf AOn}$ the Regularity of the Landweber Transform ${\sf A}$

Let S, T be QNE, $F := \operatorname{Fix} S \cap \operatorname{Fix} \mathcal{L} \{T\} \neq \emptyset$, $x_0 \in \mathcal{H}_1$, and $x_{k+1} = S_{\mu_k} \left(x_k + \lambda_k \frac{\sigma(x_k)}{\|A\|^2} A^* T(Ax_k) - Ax_k \right)$, (4) where $\mu_k, \lambda_k \in [\varepsilon, 1 - \varepsilon]$ for some small $\varepsilon > 0$ and σ satisfies

$$1 \le \sigma(x) \le \frac{\|A\|^2 \cdot \|T(Ax) - Ax\|^2}{\|A^*(T(Ax) - Ax)\|^2} \text{ for all } x \in \mathcal{H}_1.$$

Theorem (C.–Reich–Zalas, 2020)

Let x^k be given by (4). • If S and T are both weakly regular, then $x_k \rightharpoonup x^* \in F$.

Let S, T be QNE, $F := \operatorname{Fix} S \cap \operatorname{Fix} \mathcal{L} \{T\} \neq \emptyset$, $x_0 \in \mathcal{H}_1$, and $x_{k+1} = S_{\mu_k} \left(x_k + \lambda_k \frac{\sigma(x_k)}{\|A\|^2} A^* T(Ax_k) - Ax_k \right)$, (4) where $\mu_k, \lambda_k \in [\varepsilon, 1 - \varepsilon]$ for some small $\varepsilon > 0$ and σ satisfies

$$1 \le \sigma(x) \le \frac{\|A\|^2 \cdot \|T(Ax) - Ax\|^2}{\|A^*(T(Ax) - Ax)\|^2} \text{ for all } x \in \mathcal{H}_1.$$

Theorem (C.-Reich-Zalas, 2020)

Let x^k be given by (4).

- If S and T are both weakly regular, then $x_k \rightharpoonup x^* \in F$.
- Suppose that im A is closed.

Let S, T be QNE, $F := \operatorname{Fix} S \cap \operatorname{Fix} \mathcal{L} \{T\} \neq \emptyset$, $x_0 \in \mathcal{H}_1$, and $x_{k+1} = S_{\mu_k} \left(x_k + \lambda_k \frac{\sigma(x_k)}{\|A\|^2} A^* T(Ax_k) - Ax_k \right)$, (4) where $\mu_k, \lambda_k \in [\varepsilon, 1 - \varepsilon]$ for some small $\varepsilon > 0$ and σ satisfies

$$1 \le \sigma(x) \le \frac{\|A\|^2 \cdot \|T(Ax) - Ax\|^2}{\|A^*(T(Ax) - Ax)\|^2} \text{ for all } x \in \mathcal{H}_1.$$

Theorem (C.-Reich-Zalas, 2020)

Let x^k be given by (4).

- If S and T are both weakly regular, then $x_k \rightharpoonup x^* \in F$.
- Suppose that im A is closed.
 - If S, T are boundedly regular, and the families $\{\operatorname{im} A, \operatorname{Fix} T\}, \{\operatorname{Fix} S, \operatorname{Fix} \mathcal{L} \{T\}\}\ are boundedly regular, then <math>x_k \to x$.

Let S, T be QNE, $F := \operatorname{Fix} S \cap \operatorname{Fix} \mathcal{L}\{T\} \neq \emptyset$, $x_0 \in \mathcal{H}_1$, and $x_{k+1} = S_{\mu_k} \left(x_k + \lambda_k \frac{\sigma(x_k)}{\|A\|^2} A^* T(Ax_k) - Ax_k \right)$, (4) where μ_k , $\lambda_k \in [\varepsilon, 1 - \varepsilon]$ for some small $\varepsilon > 0$ and σ satisfies

$$1 \le \sigma(x) \le \frac{\|A\|^2 \cdot \|T(Ax) - Ax\|^2}{\|A^*(T(Ax) - Ax)\|^2} \text{ for all } x \in \mathcal{H}_1.$$

Theorem (C.–Reich–Zalas, 2020)

Let x^k be given by (4).

- If S and T are both weakly regular, then $x_k \rightharpoonup x^* \in F$.
- Suppose that im A is closed.
 - If S, T are boundedly regular, and the families $\{\operatorname{im} A, \operatorname{Fix} T\}, \{\operatorname{Fix} S, \operatorname{Fix} \mathcal{L} \{T\}\}\ are boundedly regular, then <math>x_k \to x$.
 - If S and T are boundedly linearly regular, and the families {im A, Fix T} and {Fix S, Fix L{T}} are boundedly linearly regular, then the convergence is linear.

Find $x \in \mathbb{R}^n$ with $Ax \in Q$

where A is an $m \times n$ matrix with nonzero rows $a_i \in \mathbb{R}^n$ and $Q := \{y \in \mathbb{R}^m : y \leq b\}.$

• Simultaneous projection for the system $Ax \leq b$

$$P(x) := \sum_{i=1}^{m} w_i (x - \frac{(a_i^T x - b_i)_+}{\|a_i\|^2} a_i,$$

where $w \in \Delta_m := \{ v \in \mathbb{R}^m : v_i > 0, i = 1, 2, ..., m, \text{ and } \sum_{i=1}^m v_i = 1 \}.$

Find $x \in \mathbb{R}^n$ with $Ax \in Q$

where A is an $m \times n$ matrix with nonzero rows $a_i \in \mathbb{R}^n$ and $Q := \{y \in \mathbb{R}^m : y \leq b\}.$

• Simultaneous projection for the system $Ax \leq b$

$$P(x) := \sum_{i=1}^{m} w_i (x - \frac{(a_i^T x - b_i)_+}{\|a_i\|^2} a_i,$$

where $w \in \Delta_m := \{v \in \mathbb{R}^m : v_i > 0, i = 1, 2, ..., m, \text{ and} \sum_{i=1}^m v_i = 1\}.$

• P(x) can be written in a matrix form

$$P(x) = x - A^T D(Ax - b)_+,$$

where $D := WN^{-2}$, W; = diag w, N := diag $(||a_1||, ||a_2||, ..., ||a_m||)$. Clearly,

$$D = \operatorname{diag}(\frac{w_1}{\|a_1\|^2}, \frac{w_2}{\|a_2\|^2}, ..., \frac{w_m}{\|a_m\|^2}).$$

Andrzej Cegielski (Zielona Góra, Poland), ${\sf AOn}$ the Regularity of the Landwe

• The Landweber operator for the SFP has the form

$$\mathcal{L}_{A}\{P_{Q}\}(x) = x - \frac{1}{\lambda_{\max}(A^{T}A)}A^{T}(Ax - b)_{+}.$$

Andrzej Cegielski (Zielona Góra, Poland), A $_{
m On}$ the Regularity of the Landweber Transford August, 26th, 2020 17 / 26

• The Landweber operator for the SFP has the form

$$\mathcal{L}_{A}\{P_{Q}\}(x) = x - \frac{1}{\lambda_{\max}(A^{T}A)}A^{T}(Ax - b)_{+}.$$

• Properties:

• The Landweber operator for the SFP has the form

$$\mathcal{L}_{A}\{P_{Q}\}(x) = x - \frac{1}{\lambda_{\max}(A^{T}A)}A^{T}(Ax - b)_{+}.$$

• Properties:

• Fix
$$\mathcal{L}_{\mathcal{A}}\{P_Q\} = \operatorname{Argmin}_{x \in \mathbb{R}^n} \|(Ax - b)_+\| = \{x : Ax \le b\}$$

case)

• The Landweber operator for the SFP has the form

$$\mathcal{L}_{A}\{P_{Q}\}(x) = x - \frac{1}{\lambda_{\max}(A^{T}A)}A^{T}(Ax - b)_{+}.$$

• Properties:

• Fix
$$\mathcal{L}_A \{ P_Q \} = \operatorname{Argmin}_{x \in \mathbb{R}^n} \| (Ax - b)_+ \| = \begin{cases} x : Ax \le b \end{cases}$$

• $\mathcal{L}_A \{ P_Q \}$ is FNE case

• The Landweber operator for the SFP has the form

$$\mathcal{L}_{A}\{P_{Q}\}(x) = x - \frac{1}{\lambda_{\max}(A^{T}A)}A^{T}(Ax - b)_{+}.$$

- Properties:
 - Fix $\mathcal{L}_{\mathcal{A}}\{\mathcal{P}_{Q}\} = \operatorname{Argmin}_{x \in \mathbb{R}^{n}} \|(Ax b)_{+}\| = \{x : Ax \leq b\}$

(consistent case)

\$\mathcal{L}_A \{P_Q\}\$ is FNE
\$\mathcal{L}_A \{P_Q\}\$ is linearly regular

• The Landweber operator for the SFP has the form

$$\mathcal{L}_{A}\{P_{Q}\}(x) = x - \frac{1}{\lambda_{\max}(A^{T}A)}A^{T}(Ax - b)_{+}.$$

- Properties:
 - Fix $\mathcal{L}_{A}\{P_{Q}\} = \operatorname{Argmin}_{x \in \mathbb{R}^{n}} \|(Ax b)_{+}\| = \{x : Ax \leq b\}$

case)

• The system $Ax \leq b$ is equivalent to $D^{\frac{1}{2}}Ax \leq D^{\frac{1}{2}}b$. The simultaneous projection is the same for both systems.

• The Landweber operator for the SFP has the form

$$\mathcal{L}_{A}\{P_{Q}\}(x) = x - \frac{1}{\lambda_{\max}(A^{T}A)}A^{T}(Ax - b)_{+}.$$

- Properties:
 - Fix $\mathcal{L}_{\mathcal{A}}\{\mathcal{P}_{Q}\} = \operatorname{Argmin}_{x \in \mathbb{R}^{n}} \|(Ax b)_{+}\| = \{x : Ax \leq b\}$

•
$$\mathcal{L}_A \{ P_Q \}$$
 is FNE
• $\mathcal{L}_A \{ P_Q \}$ is linearly regular

• The Landweber operator for the latter system has the form

$$\mathcal{L}_{D^{\frac{1}{2}}A} \{ P_{Q'} \}(x) = x - \frac{1}{\lambda_{\max}(A^T D A)} A^T D (Ax - b)_+,$$

where $Q' := \{y \in \mathbb{R}^m : y \leq D^{\frac{1}{2}}b\}$, and is not equivalent in general to $\mathcal{L}_A\{P_Q\}(x)$.

Andrzej Cegielski (Zielona Góra, Poland), AOn the Regularity of the Landweber Transfor 💦 August, 2

Theorem

• Let
$$w \in \Delta_m$$
 and $I(w) := \{i : w_i > 0\}$. It holds

$$\frac{1}{m} \le w_j := \max\{w_i : i = 1, 2, ..., m\} \le \lambda_{\max}(A^T D A) \le 1.$$

Corollary

Andrzej Cegielski (Zielona Góra, Poland), 🗛 n the Regularity of the Landweber Transfor 💦 August, 26th, 2020

Theorem

• Let
$$w \in \Delta_m$$
 and $I(w) := \{i : w_i > 0\}$. It holds

$$\frac{1}{m} \le w_j := \max\{w_i : i = 1, 2, ..., m\} \le \lambda_{\max}(A^T D A) \le 1.$$

• Moreover,

Theorem

• Let
$$w \in \Delta_m$$
 and $I(w) := \{i : w_i > 0\}$. It holds

$$\frac{1}{m} \le w_j := \max\{w_i : i = 1, 2, ..., m\} \le \lambda_{\max}(A^T D A) \le 1.$$

• Moreover,

• If
$$\lambda_{\max}(A^T D A) = w_j$$
 then a_j is orthogonal to all a_i , $i \in I(w)$, $i \neq j$;

Theorem

• Let
$$w \in \Delta_m$$
 and $I(w) := \{i : w_i > 0\}$. It holds

$$\frac{1}{m} \le w_j := \max\{w_i : i = 1, 2, ..., m\} \le \lambda_{\max}(A^T D A) \le 1.$$

Moreover,

- If $\lambda_{\max}(A^T D A) = w_j$ then a_j is orthogonal to all a_i , $i \in I(w)$, $i \neq j$;
- If the system $\{a_i : i \in I(w)\}$ is orthogonal then $\lambda_{\max}(A^T D A) = \omega_j$;

Theorem

• Let
$$w \in \Delta_m$$
 and $I(w) := \{i : w_i > 0\}$. It holds

$$\frac{1}{m} \le w_j := \max\{w_i : i = 1, 2, ..., m\} \le \lambda_{\max}(A^T D A) \le 1.$$

Moreover,

- If $\lambda_{\max}(A^T D A) = w_j$ then a_j is orthogonal to all a_i , $i \in I(w)$, $i \neq j$;
- If the system $\{a_i : i \in I(w)\}$ is orthogonal then $\lambda_{\max}(A^T D A) = \omega_j$;
- λ_{max}(A^TDA) = 1 if and only if the system A(w) := {a_i : i ∈ I(w)} is collinear, i.e., a_i = α_ia₁ for some α_i, i ∈ I(w).

Theorem

• Let
$$w \in \Delta_m$$
 and $I(w) := \{i : w_i > 0\}$. It holds

$$\frac{1}{m} \le w_j := \max\{w_i : i = 1, 2, ..., m\} \le \lambda_{\max}(A^T D A) \le 1.$$

Moreover,

- If $\lambda_{\max}(A^T D A) = w_j$ then a_j is orthogonal to all a_i , $i \in I(w)$, $i \neq j$;
- If the system $\{a_i : i \in I(w)\}$ is orthogonal then $\lambda_{\max}(A^T D A) = \omega_j$;
- λ_{max}(A^TDA) = 1 if and only if the system A(w) := {a_i : i ∈ I(w)} is collinear, i.e., a_i = α_ia₁ for some α_i, i ∈ I(w).

Corollary

• The Landweber operator $\mathcal{L}_{D^{\frac{1}{2}}A}\{P_{Q'}\}$ is an extrapolation of the simultaneous projection operator P. Moreover, if the system $\mathcal{A}(w)$ is not collinear then $\mathcal{L}_{D^{\frac{1}{2}}A}\{P_{Q'}\}$ is a strict extrapolation of P.

Andrzej Cegielski (Zielona Góra, Poland), AOn the Regularity of the Landweber Transfor 💦 Augu

Example

m = 2, A has normed rows a_1, a_2 and $w = (w_1, 1 - w_1), \omega_1 \in [0, 1], \omega_1 \in [0, 1]$ $\alpha = \sphericalangle(a_1, a_2).$ $\lambda_{\max}^{T}(A^{T}DA) = (1 + \sqrt{1 - 4w_{1}(1 - w_{1})\sin^{2}\alpha})/2.$

The extrapolation parameter $\sigma = \frac{1}{\lambda_{\max}(A^T D A)}$ as a function of the weight ω_1 and the angle α

Example (continuation)

Andrzej Cegielski (Zielona Góra, Poland), AOn the Regularity of the Landweber Transfor August, 26th, 2020

20 / 26

Example (continuation)

Andrzej Cegielski (Zielona Góra, Poland), AOn the Regularity of the Landweher Transford August, 26th, 2020
Linear Split Feasibility Problem

Example

A – an $m \times n$ matrix with normed rows a_i , and $\delta := a_i^T a_j$, $i \neq j$, $w_i = \frac{1}{m}$, i = 1, 2, ..., m.

Andrzej Cegielski (Zielona Góra, Poland), AOn the Regularity of the Landweber Transford

• Let the extrapolation function $\sigma: \mathbb{R}^n \to \mathbb{R}_+$ be defined by

$$\sigma(x) = \begin{cases} \frac{(Ax-b)_+^T D(Ax-b)_+}{\|A^T D(Ax-b)_+\|^2} & \text{if } Ax \notin b\\ 1 & \text{if } Ax \leq b \end{cases}$$

• Let the extrapolation function $\sigma: \mathbb{R}^n \to \mathbb{R}_+$ be defined by

$$\sigma(x) = \begin{cases} \frac{(Ax-b)^T_+ D(Ax-b)_+}{\|A^T D(Ax-b)_+\|^2} & \text{if } Ax \notin b\\ 1 & \text{if } Ax \leq b \end{cases}$$

• Then $\sigma(x) \geq \frac{1}{\lambda_{\max}(A^T D A)} \geq 1$ and the operator

$$U_D(x) = x - \sigma(x)A^T D(Ax - b)_+$$

is an extrapolation of the Landweber operator

$$\mathcal{L}_{D^{\frac{1}{2}}A}\{P_{Q'}\}(x) := x - \frac{1}{\lambda_{\max}(A^{T}DA)}A^{T}D(Ax - b)_{+}$$

• Let the extrapolation function $\sigma:\mathbb{R}^n \to \mathbb{R}_+$ be defined by

$$\sigma(x) = \begin{cases} \frac{(Ax-b)^{T}_{+}D(Ax-b)_{+}}{\|A^{T}D(Ax-b)_{+}\|^{2}} & \text{if } Ax \notin b\\ 1 & \text{if } Ax \leq b \end{cases}$$

• Then $\sigma(x) \geq \frac{1}{\lambda_{\max}(A^T D A)} \geq 1$ and the operator

$$U_D(x) = x - \sigma(x)A^T D(Ax - b)_+$$

is an extrapolation of the Landweber operator

$$\mathcal{L}_{D^{\frac{1}{2}}A} \{ P_{Q'} \}(x) := x - \frac{1}{\lambda_{\max}(A^T D A)} A^T D (Ax - b)_+$$

• $V_D x$ is a linearly regular cutter. Thus, for any $\lambda \in (0, 2)$ the method

$$x^{k+1} = U_{D,\lambda}(x^k)$$

converges linearly to a solution of $Ax \leq b$.

Andrzej Cegielski (Zielona Góra, Poland), 🗛 n the Regularity of the Landweber Transford 🛛 August, 26th, 2020 👘 24 / 26

References

- H. H. Bauschke, J. Borwein, SIAM Review 38 (1996).
 - C. Byrne, Inverse Problems 18 (2002).
- A. Cegielski, *Iterative Methods for Fixed Point Problems in Hilbert Spaces*, Springer, 2012.
- A. Cegielski, JOTA 165 (2015).
- A. Cegielski, S. Reich, R. Zalas, Optimization, 69 (2020).
- Y. Censor, A. Segal, J. Convex Anal. 16 (2009).
- G. López, V. Martín-Márquez, F. Wang, H.-K. Xu, *Inverse Problems* **28** (2012).
- A. Moudafi, Nonlinear Anal. 74 (2011).
- Y-C. Tang, J.-G. Peng, L.-W. Liu, *Mathematical Modelling and Analysis* **17** (2012).
- 🔋 F. Wang, H.-K. Xu, *Nonlinear Anal.* **74** (2011).
- H.-K. Xu, Inverse Problems **26** (2010).
- Q. Yang, Inverse Problems **20** (2004).

Andrzej Cegielski (Zielona Góra, Poland), ${\sf AOn}$ the Regularity of the Landweber

Thank you for your attention!

Andrzej Cegielski (Zielona Góra, Poland), AOn the Regularity of the Landweber Transfor

注▶ 《注♪

æ