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Nonexpansive and Quasi-Nonexpansive Operators

Definition
Let H be a Hilbert space. We say that an operator T : H — H is:

—

nonexpansive (NE), if
Vayern [ Tx =Tyl < x—yll;

a-averaged, o € (0,1), if T =aS+ (1 —«)Id for a NE operator S;
firmly nonexpansive (FNE), if T is %—averaged;
quasi-nonexpansive (QNE), if

Vienzerixt2o || Tx—z|| < [lx—z[;

p-strongly quasi-nonexpansive (p-SQNE), where p > 0, if
VicrzebixTro [ Tx — 2l < |x — 2| — pl| T — x|%
a cutter if

Ve zerix720 (2 — Tx,x — Tx) <0;
(& T is 1-SQNE).
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Nonexpansive and Quasi-Nonexpansive Operators

(v —=Tx,u—Txry<0

€T

cutter and SQNE operator
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Split Feasibility Problem and the Landweber Transform

‘H1 and H, - two real Hilbert spaces, A: H1 — Hy a bounded linear
operator. The Split Feasibility Problem (SFP) is to

find x € C such that Ax € Q,

where C C 'H; and Q C 'H, are closed and convex.

Hi A Ho
@ :

SFP with H; = IR" and Hy = R™ was introduced by Censor and Elfving
in 1994,
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Split Feasibility Problem and the LandweberTransform

In 2002 Byrne proposed the following CQ-method (in a finite dimensional

case)

Xk+1 — PC(Xk+

1Al

AT (PoAxk — AxF)),

where A € (0,2) and ||A|| is the spectral norm of A, and proved its

convergence to

1
Argmin || Pg (Ax) — Ax||?
xeC 2

Hi

(= Fix(Id +AT (Pg —1d)A)).

Andrzej Cegielski (Zielona Géra, Poland),

August, 26th, 2020



Split Feasibility Problem and the Landweber Transform

If Q ={b} C H, then the SFP is to find x € C with Ax = b. In this case
the CQ-method is called the projected Landweber method.

Replace P¢ and Pg in the CQ-method by sequences of QNE operators Sy
and Ty and the parameter A by a sequence A € (0,1)

A
XKt = 5 (xk + HATPA*(Tk(Axk) — AXKY). (1)
We introduce a Landweber transform denoted by La{-} or shortly £{-},
which for a given operator T : H, — 'H» assigns an operator
L{T}:H1 — H; defined by

La{T}:=1d AT —1d)A

_i_i
1A%

which we call a Landweber operator (related to T).
Denoting Uy :=Id +A(U —Id) — the A-relaxation of U, we write (1) as:

X = S LT}
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plit Feasibility Problem and the Landweber Transform

@ Convergence in finite dimensional setting:
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@ Convergence in finite dimensional setting:
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Split Feasibility Problem and the Landweber Transform

@ Convergence in finite dimensional setting:
(a) Byrne, 2002: xK*1 = P L{(Pg)a}xk;
(b) Yang, 2004: x¥*1 = P.L{(Pg)a}x¥, Pc, Pq — subgradient projections;
(c) Censor-Segal, 2009: xk*1 = SL{T  xk S, T — cutters satisfying the
closedness principle;
@ Weak convergence in infinite dimensional setting;
(d) Xu, 2010: xkt1 = PCE{(Pq)/\}Xk, Pc, P4 — subgradient projections;
(e) Moudafi, 2010: x*™1 =5, L{T\}x*, y,, A€ e,1—¢], S, T - QNE
satisfying the demi-closedness principle;
(f) Wang—Xu, 2011: C =N"; FixVU;, Q =N Fix V;, U;, V; — cutters

satisfying the DC principle, x¥*1 = U[k]ﬁ{(V[k])/\}xk (a cyclic
control);

(h) Lopez—Martin-Marquez—Wang—Xu, 2012: extrapolated version of (d);
(i) C., 2015: general method (with almost cyclic or intermittent control);
(j) C., 2016: xk+1 = Skﬁak(xk){(Tk)A}(xk) extrapolated version of (e);

© C.—Reich—Zalas, 2020: Conditions for the weak / strong /linear
convergence.
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Regular Families of Sets and Regular Operators

Definition (Bauschke—Borwein, 1996)

o Let C be a family of closed convex subsets C; C 'H,
iel:={12 .., m} with C:= ;g G # D. We say that C is:

o (boundedly) regular if for any (bounded) sequence {x¥}%_,
limmaxd(x¥, ;) = 0 = limd(x¥, C) = 0;
k i€l k

o (boundedly) linearly regular if (for any bounded D C H) there is a
constant ¥ > 0 such that for every x(€ D)

d(x,C) < Kmalxd(x, G).
1€

elet GCH,iel:={1,..., m}, be closed convex with
C:=Nie;C #Dand let C:={C |iel}.
e If dimH < oo, then C is boundedly regular;

e If all C;, i € I, are half-spaces, then C is linearly regular;
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Regular Families of Sets and Regular Operators

o We say that a quasi-nonexpansive operator T: H — H is:
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Regular Families of Sets and Regular Operators

o We say that a quasi-nonexpansive operator T: H — H is:
o weakly regular if for any sequence {x*}%°_; and {n,}3>, C {k}7_,

Xnk Ay

| Txk = xk|| = 0 } = y€FixT;
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Regular Families of Sets and Regular Operators

o We say that a quasi-nonexpansive operator T: H — H is:
o weakly regular if for any sequence {x*}%°_; and {n,}3>, C {k}7_,

Xnk Ay

| Txk = xk|| = 0 } = y€FixT;

o (boundedly) regular if for any (bounded) sequence {x*}$°_,

Jim | Txk —xK|=0 — Jim d(x* Fix T) = 0;

Andrzej Cegielski (Zielona Géra, Poland), A' August, 26th, 2020



Regular Families of Sets and Regular Operators

o We say that a quasi-nonexpansive operator T: H — H is:
o weakly regular if for any sequence {x*}%°_; and {n,}3>, C {k}7_,

Xnk N y . .
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Regular Families of Sets and Regular Operators

o We say that a quasi-nonexpansive operator T: H — H is:
o weakly regular if for any sequence {x*}%°_; and {n,}3>, C {k}7_,

Xnk N y . .

||Txk—xk||—>0} = y€FixT;

o (boundedly) regular if for any (bounded) sequence {x*}$°_,
Jim || xK—xk|=0 = Jim d(x* Fix T) = 0;

o (boundedly) linearly regular if (for any bounded D C 'H) there is
6 > 0 such that for all x(€ D)

d(x,FixT) < || Tx —x||.

@ The metric projection Pc is linearly regular.
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Regular Families of Sets and Regular Operators

@ Why the notion of regularity of operators is important?

Andrzej Cegielski (Zielona Géra, Poland), A August, 26th, 2020



Regular Families of Sets and Regular Operators

@ Why the notion of regularity of operators is important?

o Let U: H — H be strongly quasi-nonexpansive, x° € H and

Xkt .= ka, k > 0.

Andrzej Cegielski (Zielona Géra, Poland), A August, 26th, 2020



Regular Families of Sets and Regular Operators

@ Why the notion of regularity of operators is important?

o Let U: H — H be strongly quasi-nonexpansive, x° € H and

Xkt .= ka, k > 0.

k

e If U is weakly regular, then x* converges weakly to some x* € Fix U.
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Regular Families of Sets and Regular Operators

@ Why the notion of regularity of operators is important?

o Let U: H — H be strongly quasi-nonexpansive, x° € H and

Xkt .= ka, k > 0.

o If U is weakly regular, then xk converges weakly to some x* € Fix U.

e If U is boundedly regular, then the convergence to x* is in norm.
o If U is boundedly linearly regular, then the convergence is linear.

@ The theorem is also true if we replace U by a sequence of operators
Ug. In this case one should define a (weakly, linearly) regular
sequence operators.
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Properties of the Landweber Operator

L{T) = Id+”Al”2A*(T—Id)A

o Fix £{T} 2 A~L(Fix T);
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Properties of the Landweber Operator

1.
LT} =14 A (T~ 1d)A
o Fix £{T} 2 A!(Fix T);
o L\{T}=L{T\};
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Properties of the Landweber Operator

L{T} := Id+%A*(T—Id)A
A
o Fix L{T} D A (Fix T);
o L\{T}=L{T\};
o L{YLywiTi} =il wiL{Ti};

Andrzej Cegielski (Zielona Géra, Poland), August, 26th, 2020



Properties of the Landweber Operator

1

LATY :=1d+——
{7y TAl?

AT —Id)A
o Fix £{T} D A~1(Fix T);

o Li{T}=L{T\};

o L{YwiTi} =Y wil{Ti};

o If T is NE then £L{T} is also NE;
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Properties of the Landweber Operator

1

LATY :=1d+——
{7y TAl?

A*(T —1d)A

Fix L{T} 2 A"1(Fix T);

LATE =L{T)};

LT wiTi} =YL wi L{Ti};

If T is NE then £L{T} is also NE;

(C., 2016) If T is a-averaged then L£L{ T} is also a-averaged;
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Properties of the Landweber Operator

1

A (T —Id)A
fapA (7 1)

LAT} =1d++——
Fix L{T} 2 A"1(Fix T);
LATE =L{T)};
LT wiTi} =YL wi L{Ti};
If T is NE then £L{T} is also NE;
(C., 2016) If T is a-averaged then L£L{ T} is also a-averaged;

e (Wang—Xu, 2011, C., 2015) Let T be p-SQNE, where p > 0, and
imANFix T # @.
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Properties of the Landweber Operator

1

A (T —Id)A
fapA (7 1)

LAT} =1d++——
Fix L{T} 2 A"1(Fix T);
LATE =L{T)};
LT wiTi} =YL wi L{Ti};
If T is NE then £L{T} is also NE;
(C., 2016) If T is a-averaged then L£L{ T} is also a-averaged;

e (Wang—Xu, 2011, C., 2015) Let T be p-SQNE, where p > 0, and
imANFix T # @.

o Then L£{T} is also p-SQNE and Fix £{T} = A~!(Fix T).
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Properties of the Landweber Operator

1

A (T —Id)A
fapA (7 1)

LAT} =1d++——
Fix L{T} 2 A"1(Fix T);
LATE =L{T)};
LT wiTi} =YL wi L{Ti};
If T is NE then £L{T} is also NE;
(C., 2016) If T is a-averaged then L£L{ T} is also a-averaged;
e (Wang—Xu, 2011, C., 2015) Let T be p-SQNE, where p > 0, and

imANFix T # @.

o Then L£{T} is also p-SQNE and Fix £{T} = A~!(Fix T).
o In particular, if T is a cutter then £{T} is also a cutter.
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Regularity of the Landweber Operator

o Let A:"Hi1 — H> be nonzero bounded linear, T : Hy — H> be QNE
with imANFix T # @, and L{T} : H1 — H1 be the Ladweber
operator, defined by

C{T}y = Id+WA*(T—Id)A.
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Regularity of the Landweber Operator

o Let A:"Hi1 — H> be nonzero bounded linear, T : Hy — H> be QNE
with imANFix T # @, and L{T} : H1 — H1 be the Ladweber
operator, defined by

1

LATYV=1d+——
{7 =1+

AY(T —1d)A.

o (Wang—Xu, 2011, C., 2015) I/f T is weakly regular, then the
Ladweber operator L{ T} is weakly regular.
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Regularity of the Landweber Operator

o Let A:"Hi1 — H> be nonzero bounded linear, T : Hy — H> be QNE
with imANFix T # @, and L{T} : H1 — H1 be the Ladweber
operator, defined by

1

LATYV=1d+——
{7 =1+

AY(T —1d)A.

o (Wang—Xu, 2011, C., 2015) I/f T is weakly regular, then the
Ladweber operator L{ T} is weakly regular.

@ Suppose that A has closed range
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Regularity of the Landweber Operator

o Let A:"Hi1 — H> be nonzero bounded linear, T : Hy — H> be QNE
with imANFix T # @, and L{T} : H1 — H1 be the Ladweber
operator, defined by

1

LATYV=1d+——
{7 =1+

AY(T —1d)A.

o (Wang—Xu, 2011, C., 2015) I/f T is weakly regular, then the
Ladweber operator L{ T} is weakly regular.

@ Suppose that A has closed range

o (C.-Reich-Zalas, 2020) /f T is boundedly regular and {im A, Fix T }
is boundedly regular, then L{T} is boundedly regular.
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Regularity of the Landweber Operator

o Let A:"Hi1 — H> be nonzero bounded linear, T : Hy — H> be QNE
with imANFix T # @, and L{T} : H1 — H1 be the Ladweber
operator, defined by

1

LATYV=1d+——
{7 =1+

AY(T —1d)A.

o (Wang—Xu, 2011, C., 2015) I/f T is weakly regular, then the
Ladweber operator L{ T} is weakly regular.

@ Suppose that A has closed range

o (C.-Reich-Zalas, 2020) /f T is boundedly regular and {im A, Fix T }
is boundedly regular, then L{T} is boundedly regular.

o (C.—Reich—-Zalas, 2020) I/f T is boundedly linearly regular and
{im A, Fix T} is boundedly linearly regular, then L{ T} is boundedly
linearly regular.
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Extrapolated Landweber Operator

Let T :Hy — Ha, and 0 : H1 — [1,00) be an extrapolation function.

The operator L,{ T} : H1 — H;, defined by
LATIx :=x+0(x)(L{T}x—x), (2)

is called an extrapolated Landweber operator (related to o).

A\

Theorem (C., 2016, C.—Reich—Zalas, 2020)
Let T be QNE, Fix L{T} # @ and the extrapolation function o satisfies

JAJ2 - [ T(Ax) — Ax]?
70) < AT (Ax) — A

for all x € H; (3)

Then Lo T} is QNE. Conditions for weak/strong/linear regularity of
Ls{ T} are similar to those of L{T}.
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Projected Extrapolated Landweber Method

Let S, T be QNE, F := Fix SNFix £L{T} # @,
U(Xk>
1Al[2
where i, , Ak € [e,1 — g] for some small € > 0 and ¢ satisfies
1A% - | T (Ax) — Ax]|?
1<o(x) <

=700 = AT (A A

Theorem (C.—Reich—Zalas, 2020)

Let x* be given by (4).
@ IfS and T are both weakly regular, then x, — x* € F.

xo € 'H1, and Xk+1 = SVk <Xk + Ak A*T(Axk) — AXk> , (4)

for all x € H;.
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Projected Extrapolated Landweber Method

Let S, T be QNE, F := Fix SNFix £L{T} # @,
U(Xk>
1Al[2
where i, , Ak € [e,1 — g] for some small € > 0 and ¢ satisfies
1A% - | T (Ax) — Ax]|?
1<o(x) <

=700 = AT (A A

Theorem (C.—Reich—Zalas, 2020)

Let x* be given by (4).
@ IfS and T are both weakly regular, then x, — x* € F.

xo € 'H1, and Xk+1 = SVk <Xk + Ak A*T(Axk) — AXk> , (4)

for all x € H;.

@ Suppose that im A is closed.
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Projected Extrapolated Landweber Method

Let S, T be QNE, F := Fix SNFix £L{T} # @,
U(Xk>
1Al[2
where i, , Ak € [e,1 — g] for some small € > 0 and ¢ satisfies
1A% - | T (Ax) — Ax]|?
1<o(x) <

=700 = AT (A A

Theorem (C.—Reich—Zalas, 2020)

Let x* be given by (4).
@ IfS and T are both weakly regular, then x, — x* € F.

xo € 'H1, and Xk+1 = SVk <Xk + Ak A*T(Axk) — AXk> , (4)

for all x € H;.

@ Suppose that im A is closed.

e IfS, T are boundedly regular, and the families
{im A, Fix T}, {Fix S, Fix L{T}} are boundedly regular, then x;, — x.
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Projected Extrapolated Landweber Method

Let S, T be QNE, F := Fix SNFix L{T} # @,

X0 € Hi, and xxq1 = 5 1y <Xk + Ak HE4H2>A*T(AXI() — AXk> , (4)

where i, , Ak € [e,1 — g] for some small € > 0 and ¢ satisfies

A2 - ]| T (Ax) — Ax])?
1<o(x) < "
|A*(T (Ax) — Ax)||?
Theorem (C.—Reich—Zalas, 2020)
Let x* be given by (4).
@ IfS and T are both weakly regular, then x, — x* € F.

for all x € H;.

@ Suppose that im A is closed.

e IfS, T are boundedly regular, and the families
{im A, Fix T}, {Fix S, Fix L{T}} are boundedly regular, then x;, — x.
e IfS and T are boundedly linearly regular, and the families
{im A, Fix T} and {FixS,Fix L{T}} are boundedly linearly regular,
then the convergence is linear.

Andrzej Cegielski (Zielona Géra, Poland), August, 26th, 2020



Linear Split Feasibility Problem

Find x € R" with Ax € Q

where A is an m X n matrix with nonzero rows a; € IR" and
Q:={y e R":y < b}.
@ Simultaneous projection for the system Ax < b

m T _bi
P(x) := Z wi(x — Wah

i=1
where w € Ay, :={veR": v, >0,i=1,2,..m, and
m —
i=1 Vi = 1}
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Linear Split Feasibility Problem

Find x € R" with Ax € Q
where A is an m X n matrix with nonzero rows a; € IR" and
Q:={y e R":y < b}.
@ Simultaneous projection for the system Ax < b

. (a] x = bi)+
P(x) := Z wi(x — ~— Ha'H2I aj,
i=1 i
where w € Ay, :={veR": v, >0,i=1,2,..m, and
Yty vi =1}

@ P(x) can be written in a matrix form

P(x) = x—ATD(Ax — b),,

where D := WN—2, W; = diagw, N := diag(||ai||, ||a2]]. ... |am|])-
Clearly,
. W) Wm
D = diag( L , ).
Sl Taol2' " Tam|?

A

Andrzej Cegielski (Zielona Géra, Poland),

August, 26th, 2020



Linear Split Feasibility Problem

@ The Landweber operator for the SFP has the form

La{Po}(x) = x — ——

— = AT(Ax— )
)\max(ATA) ( X b)+
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Linear Split Feasibility Problem

@ The Landweber operator for the SFP has the form

La{Po}(x) = x — ——

— = AT(Ax— )
)\max(ATA) ( X b)+

o Properties:
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Linear Split Feasibility Problem

@ The Landweber operator for the SFP has the form

La{Po}(x) = x — ——

— = AT(Ax— )
)\max(ATA) ( X b)+

o Properties:
o FixLa{Pq} = Argmin, ., |[(Ax — b) || = {x:Ax < b}

(consistent

case)
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Linear Split Feasibility Problem

@ The Landweber operator for the SFP has the form
1

La{P =x——F——AT(Ax—b),.
A{ Q}(X) X )\max(ATA) ( X )+
o Properties:
o FixLa{Pq} = Argmin, ., |[(Ax — b) || = {x:Ax < b}
(consistent
4] CA{PQ} is FNE case)
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Linear Split Feasibility Problem

@ The Landweber operator for the SFP has the form
1

La{P =x——F——AT(Ax—b),.
A{ Q}(X) X )\max(ATA) ( X )+
o Properties:
o FixLa{Pq} = Argmin, ., |[(Ax — b) || = {x:Ax < b}
(consistent
4] CA{PQ} is FNE case)

o La{Pq} is linearly regular
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Linear Split Feasibility Problem

@ The Landweber operator for the SFP has the form

1
La{P =x——F—AT(Ax—b),.
A{ Q}(X) X )\max(ATA) ( X )+
o Properties:
o FixLa{Pq} = Argmin, ., |[(Ax — b) || = {x:Ax < b}
(consistent
4] £A{PQ} is FNE case)

o La{Pq} is linearly regular

@ The system Ax < b is equivalent to D? Ax < D2 b. The simultaneous
projection is the same for both systems.
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Linear Split Feasibility Problem

@ The Landweber operator for the SFP has the form

1
La{P =x——F—AT(Ax—b),.
A{ Q}(X) X )\max(ATA) ( X )+
o Properties:
o FixLa{Pq} = Argmin, ., |[(Ax — b) || = {x:Ax < b}
(consistent
4] £A{PQ} is FNE case)

o La{Pq} is linearly regular

@ The system Ax < b is equivalent to D? Ax < D2 b. The simultaneous
projection is the same for both systems.
@ The Landweber operator for the latter system has the form

_ 1 T
ED%A{PQI}(X) =X — mA D(AX — b)+,

where Q" :={y e R": y < D%b}, and is not equivalent in general
to La{Pq}(x).
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Linear Split Feasibility Problem

o Letw € Ay, and I(w) := {i: w; > 0}. It holds

1
— <wji=max{w; : i =1,2,..,m} < Anax(AT DA) < 1.
m

v

Corollary
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Linear Split Feasibility Problem

o Letw € Ay, and I(w) := {i: w; > 0}. It holds

1
— <wji=max{w; : i =1,2,..,m} < Anax(AT DA) < 1.
m

@ Moreover,

v

Corollary
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Linear Split Feasibility Problem

o Letw € Ay, and I(w) := {i: w; > 0}. It holds

1
— <wji=max{w; : i =1,2,..,m} < Anax(AT DA) < 1.
m

@ Moreover,

o If Amax(AT DA) = w; then a; is orthogonal to all a;, i € I(w), i # j;

v

Corollary
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Linear Split Feasibility Problem

o Letw € Ay, and I(w) := {i: w; > 0}. It holds

1
— <wji=max{w; : i =1,2,..,m} < Anax(AT DA) < 1.
m

@ Moreover,

o If Amax(AT DA) = w; then a; is orthogonal to all a;, i € I(w), i # j;
o If the system {a; : i € I(w)} is orthogonal then Amax (AT DA) = wj;

v

Corollary
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Linear Split Feasibility Problem

o Letw € Ay, and I(w) := {i: w; > 0}. It holds

1
— <wji=max{w; : i =1,2,..,m} < Anax(AT DA) < 1.
m

@ Moreover,

° If)LmaX(ATDA) = w; then a; is orthogonal to all a;, i € I(w), i #j;

o If the system {a; : i € I(w)} is orthogonal then Amax (AT DA) = wj;

o Amax(AT DA) = 1 if and only if the system A(w) := {a; : i € I(w)}
is collinear, i.e., aj = aja; for some a;, i € |(w).

v

Corollary
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Linear Split Feasibility Problem

o Letw € Ay, and I(w) := {i: w; > 0}. It holds

1
— <wji=max{w; : i =1,2,..,m} < Anax(AT DA) < 1.
m

@ Moreover,

° If)LmaX(ATDA) = w; then a; is orthogonal to all a;, i € I(w), i #j;

o If the system {a; : i € I(w)} is orthogonal then Amax (AT DA) = wj;

o Amax(AT DA) = 1 if and only if the system A(w) := {a; : i € I(w)}
is collinear, i.e., aj = aja; for some a;, i € |(w).

v

Corollary

e The Landweber operator ED%A{PQ'} is an extrapolation of the

simultaneous projection operator P. Moreover, if the system A(w) is

not collinear then L’D 1 A{PQ/} is a strict extrapolation of P.
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Linear Split Feasibility Problem

m = 2, Ahas normed rows a;, ay and w = (wy,1 —wy), wy € [0,1],
a = <(a1, a2).
Amax(ATDA) = (14 /1 — 4w (1 — wy) sin &) /2.

A
=/ N
- ,;;o:‘\}%ig\ S
ZaS NN
2 IRERIRIRT
SR RIS
LIRSS
IS
SRR
X

The extrapolation parameter
o= m as a function of
the weight w; and the angle «
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Linear Split Feasibility Problem

Example (continuation)
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Linear Split Feasibility Problem

Example (continuation)
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Linear Split Feasibility Problem

A—an m x nmatrix with normed rows a;, and 6 := a/ a;, i # j,
w; = #, =12, .. m.

T

02 O 0.2

0.4 delta 0.6 0.8

s

The extrapolation parameter o :=

m as a function of § for
m=256
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Extrapolated Landweber Operator for Linear Inequalities

@ Let the extrapolation function ¢ : R" — IR be defined by

{ (Ax—b)ID(Ax—b)4 T Ax;é b

o(x) ={ TATD(Ax—b). 2
1 if Ax < b
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Extrapolated Landweber Operator for Linear Inequalities

@ Let the extrapolation function ¢ : R" — IR be defined by

(Ax—b)ID(Ax—b)4
o(x) = { ||ATD<A1x—b>+\|2

if Ax £ b
if Ax < b

e Then o(x) > 7 = 1 and the operator

max(ATDA
Up(x) = x —a(x)ATD(Ax — b),
is an extrapolation of the Landweber operator

1

P _ _ T —_
KD%A{PQ/}(X) =X /\maX(ATDA)A D(Ax — b)+
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Extrapolated Landweber Operator for Linear Inequalities

@ Let the extrapolation function ¢ : R" — IR be defined by

(Ax—b)T D(Ax—b);
o(x) = TATD(Ax—b)4 | if Ax 7{\ b
1 if Ax < b
@ Then U'(X) > m > 1 and the operator

Up(x) = x —a(x)ATD(Ax — b),
is an extrapolation of the Landweber operator

1

P _ _ T —_
ED%A{PQ/}(X) =X /\maX(ATDA)A D(Ax — b)+

e Vpx is a linearly regular cutter. Thus, for any A € (0,2) the method
X = Up 1 (x9)

converges linearly to a solution of Ax < b.
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Extrapolated Landweber Operator for Linear Inequalities
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Thank you for your attention!

[m]
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