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Nonexpansive and Quasi-Nonexpansive Operators

Definition
LetH be a Hilbert space. We say that an operator T : H → H is:

nonexpansive (NE), if
∀x ,y∈H ‖Tx − Ty‖ ≤ ‖x − y‖ ;

α-averaged , α ∈ (0, 1), if T = αS + (1− α) Id for a NE operator S ;
firmly nonexpansive (FNE), if T is 12 -averaged;
quasi-nonexpansive (QNE), if

∀x∈H,z∈FixT 6=∅ ‖Tx − z‖ ≤ ‖x − z‖ ;

ρ-strongly quasi-nonexpansive (ρ-SQNE), where ρ > 0, if

∀x∈H,z∈FixT 6=∅ ‖Tx − z‖2 ≤ ‖x − z‖2 − ρ‖Tx − x‖2;
a cutter if ∀x∈H,z∈FixT 6=∅ 〈z − Tx , x − Tx〉 ≤ 0;
(⇔ T is 1-SQNE).
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Nonexpansive and Quasi-Nonexpansive Operators

cutter and SQNE operator
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Split Feasibility Problem and the Landweber Transform

H1 and H2 - two real Hilbert spaces, A : H1 → H2 a bounded linear
operator. The Split Feasibility Problem (SFP) is to

find x ∈ C such that Ax ∈ Q,

where C ⊆ H1 and Q ⊆ H2 are closed and convex.

SFP with H1 = Rn and H2 = Rm was introduced by Censor and Elfving
in 1994.
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Split Feasibility Problem and the LandweberTransform

In 2002 Byrne proposed the following CQ-method (in a finite dimensional
case)

xk+1 = PC (x
k +

λ

‖A‖2A
T (PQAx

k − Axk )),

where λ ∈ (0, 2) and ‖A‖ is the spectral norm of A, and proved its
convergence to

Argmin
x∈C

1
2
‖PQ (Ax)− Ax‖2 (= Fix(Id+AT (PQ − Id)A)).
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Split Feasibility Problem and the Landweber Transform

If Q = {b} ⊆ H2 then the SFP is to find x ∈ C with Ax = b. In this case
the CQ-method is called the projected Landweber method .
Replace PC and PQ in the CQ-method by sequences of QNE operators Sk
and Tk and the parameter λ by a sequence λk ∈ (0, 1)

xk+1 = Sk (x
k +

λk
‖A‖2A

∗(Tk (Ax
k )− Axk )). (1)

We introduce a Landweber transform denoted by LA{·} or shortly L{·},
which for a given operator T : H2 → H2 assigns an operator
L{T} : H1 → H1 defined by

LA{T} := Id+
1
‖A‖2A

∗(T − Id)A

which we call a Landweber operator (related to T ).
Denoting Uλ := Id+λ(U − Id) —the λ-relaxation of U, we write (1) as:

xk+1 = SkL{(Tk )λk }
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Split Feasibility Problem and the Landweber Transform
1 Convergence in finite dimensional setting:

(a) Byrne, 2002: xk+1 = PCL{(PQ )λ}xk ;
(b) Yang, 2004: xk+1 = PcL{(Pq)λ}xk , Pc ,Pq —subgradient projections;
(c) Censor—Segal, 2009: xk+1 = SL{Tλ}xk , S ,T —cutters satisfying the

closedness principle;

2 Weak convergence in infinite dimensional setting;

(d) Xu, 2010: xk+1 = PcL{(Pq)λ}xk , Pc ,Pq —subgradient projections;
(e) Moudafi, 2010: xk+1 = Sµk

L{Tλ}xk , µk ,λ ∈ [ε, 1− ε], S ,T —QNE
satisfying the demi-closedness principle;

(f) Wang—Xu, 2011: C =
⋂m
i=1 FixUi , Q =

⋂m
i=1 FixVi , Ui ,Vi —cutters

satisfying the DC principle, xk+1 = U[k ]L{(V[k ])λ}xk (a cyclic
control);

(h) Lopez—Martín-Márquez—Wang—Xu, 2012: extrapolated version of (d);
(i) C., 2015: general method (with almost cyclic or intermittent control);
(j) C., 2016: xk+1 = SkLσk (x k ){(Tk )λ}(x

k ) extrapolated version of (e);

3 C.—Reich—Zalas, 2020: Conditions for the weak / strong /linear
convergence.
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Regular Families of Sets and Regular Operators

Definition (Bauschke—Borwein, 1996)

Let C be a family of closed convex subsets Ci ⊆ H,
i ∈ I := {1, 2, ...,m}, with C :=

⋂
i∈I Ci 6= ∅. We say that C is:

(boundedly) regular if for any (bounded) sequence {xk}∞
k=0

lim
k
max
i∈I

d(xk ,Ci ) = 0 =⇒ lim
k
d(xk ,C ) = 0;

(boundedly) linearly regular if (for any bounded D ⊆ H) there is a
constant κ > 0 such that for every x(∈ D)

d(x ,C ) ≤ κmax
i∈I

d(x ,Ci ).

Let Ci ⊆ H, i ∈ I := {1, . . . ,m}, be closed convex with
C :=

⋂
i∈I Ci 6= ∅ and let C := {Ci | i ∈ I}.

If dimH < ∞, then C is boundedly regular;
If all Ci , i ∈ I , are half-spaces, then C is linearly regular;
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(boundedly) regular if for any (bounded) sequence {xk}∞
k=0

lim
k
max
i∈I

d(xk ,Ci ) = 0 =⇒ lim
k
d(xk ,C ) = 0;

(boundedly) linearly regular if (for any bounded D ⊆ H) there is a
constant κ > 0 such that for every x(∈ D)

d(x ,C ) ≤ κmax
i∈I

d(x ,Ci ).

Let Ci ⊆ H, i ∈ I := {1, . . . ,m}, be closed convex with
C :=

⋂
i∈I Ci 6= ∅ and let C := {Ci | i ∈ I}.

If dimH < ∞, then C is boundedly regular;
If all Ci , i ∈ I , are half-spaces, then C is linearly regular;
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Regular Families of Sets and Regular Operators

Definition
We say that a quasi-nonexpansive operator T : H → H is:

weakly regular if for any sequence {xk}∞
k=0 and {nk}∞

k=0 ⊆ {k}∞
k=0

xnk ⇀ y
‖Txk − xk‖ → 0

}
=⇒ y ∈ FixT ;

(boundedly) regular if for any (bounded) sequence {xk}∞
k=0

lim
k→∞

‖Txk − xk‖ = 0 =⇒ lim
k→∞

d(xk ,FixT ) = 0;

(boundedly) linearly regular if (for any bounded D ⊆ H) there is
δ > 0 such that for all x(∈ D)

d(x ,FixT ) ≤ δ‖Tx − x‖.

The metric projection PC is linearly regular.
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Regular Families of Sets and Regular Operators

Why the notion of regularity of operators is important?

Theorem

Let U : H → H be strongly quasi-nonexpansive, x0 ∈ H and

xk+1 := Uxk , k ≥ 0.

If U is weakly regular, then xk converges weakly to some x∗ ∈ FixU.
If U is boundedly regular, then the convergence to x∗ is in norm.
If U is boundedly linearly regular, then the convergence is linear.

The theorem is also true if we replace U by a sequence of operators
Uk . In this case one should define a (weakly, linearly) regular
sequence operators.
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Properties of the Landweber Operator

L{T} := Id+
1
‖A‖2A

∗(T − Id)A

FixL{T} ⊇ A−1(FixT );

Lλ{T} = L{Tλ};
L{∑m

i=1 ωiTi} = ∑m
i=1 ωiL{Ti};

If T is NE then L{T} is also NE;
(C., 2016) If T is α-averaged then L{T} is also α-averaged;

(Wang—Xu, 2011, C., 2015) Let T be ρ-SQNE, where ρ ≥ 0, and
imA∩ FixT 6= ∅.

Then L{T} is also ρ-SQNE and FixL{T} = A−1(FixT ).
In particular, if T is a cutter then L{T} is also a cutter.
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Regularity of the Landweber Operator

Theorem
Let A : H1 → H2 be nonzero bounded linear, T : H2 → H2 be QNE
with imA∩ FixT 6= ∅, and L{T} : H1 → H1 be the Ladweber
operator, defined by

L{T} = Id+
1
‖A‖2A

∗(T − Id)A.

(Wang—Xu, 2011, C., 2015) If T is weakly regular, then the
Ladweber operator L{T} is weakly regular.

Suppose that A has closed range

(C.—Reich—Zalas, 2020) If T is boundedly regular and {imA,FixT}
is boundedly regular, then L{T} is boundedly regular.
(C.—Reich—Zalas, 2020) If T is boundedly linearly regular and
{imA,FixT} is boundedly linearly regular, then L{T} is boundedly
linearly regular.
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with imA∩ FixT 6= ∅, and L{T} : H1 → H1 be the Ladweber
operator, defined by

L{T} = Id+
1
‖A‖2A

∗(T − Id)A.

(Wang—Xu, 2011, C., 2015) If T is weakly regular, then the
Ladweber operator L{T} is weakly regular.

Suppose that A has closed range

(C.—Reich—Zalas, 2020) If T is boundedly regular and {imA,FixT}
is boundedly regular, then L{T} is boundedly regular.
(C.—Reich—Zalas, 2020) If T is boundedly linearly regular and
{imA,FixT} is boundedly linearly regular, then L{T} is boundedly
linearly regular.
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Extrapolated Landweber Operator

Let T : H2 → H2, and σ : H1 → [1,∞) be an extrapolation function.

Definition
The operator Lσ{T} : H1 → H1, defined by

Lσ{T}x := x + σ(x)(L{T}x − x), (2)

is called an extrapolated Landweber operator (related to σ).

Theorem (C., 2016, C.—Reich—Zalas, 2020)

Let T be QNE, FixL{T} 6= ∅ and the extrapolation function σ satisfies

σ(x) ≤ ‖A‖
2 · ‖T (Ax)− Ax‖2

‖A∗(T (Ax)− Ax)‖2 for all x ∈ H1 (3)

Then Lσ{T} is QNE. Conditions for weak/strong/linear regularity of
Lσ{T} are similar to those of L{T}.
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Projected Extrapolated Landweber Method

Let S ,T be QNE, F := Fix S ∩ FixL{T} 6= ∅,

x0 ∈ H1, and xk+1 = Sµk

(
xk + λk

σ(xk )
‖A‖2 A

∗T (Axk )− Axk
)
, (4)

where µk ,λk ∈ [ε, 1− ε] for some small ε > 0 and σ satisfies

1 ≤ σ(x) ≤ ‖A‖
2 · ‖T (Ax)− Ax‖2

‖A∗(T (Ax)− Ax)‖2 for all x ∈ H1.

Theorem (C.—Reich—Zalas, 2020)

Let xk be given by (4).
If S and T are both weakly regular, then xk ⇀ x∗ ∈ F .

Suppose that imA is closed.

If S ,T are boundedly regular, and the families
{imA,FixT}, {FixS ,FixL{T}} are boundedly regular, then xk → x.
If S and T are boundedly linearly regular, and the families
{imA,FixT} and {FixS ,FixL{T}} are boundedly linearly regular,
then the convergence is linear.
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Linear Split Feasibility Problem

Find x ∈ Rn with Ax ∈ Q
where A is an m× n matrix with nonzero rows ai ∈ Rn and
Q := {y ∈ Rm : y ≤ b}.

Simultaneous projection for the system Ax ≤ b

P(x) :=
m

∑
i=1
wi (x −

(aTi x − bi )+
‖ai‖2

ai ,

where w ∈ ∆m := {v ∈ Rm : vi > 0, i = 1, 2, ...,m, and
∑m
i=1 vi = 1}.

P(x) can be written in a matrix form

P(x) = x − ATD(Ax − b)+,
where D := WN−2, W ;= diagw , N := diag(‖a1‖, ‖a2‖, ..., ‖am‖).
Clearly,

D = diag(
w1
‖a1‖2

,
w2
‖a2‖2

, ...,
wm
‖am‖2

).
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Linear Split Feasibility Problem

The Landweber operator for the SFP has the form

LA{PQ}(x) = x −
1

λmax(ATA)
AT (Ax − b)+.

Properties:

FixLA{PQ } = Argminx∈Rn ‖(Ax − b)+‖ =
(consistent

case)

{x : Ax ≤ b}

LA{PQ } is FNE
LA{PQ } is linearly regular

The system Ax ≤ b is equivalent to D 1
2Ax ≤ D 1

2 b. The simultaneous
projection is the same for both systems.
The Landweber operator for the latter system has the form

L
D
1
2 A
{PQ ′}(x) = x −

1
λmax(ATDA)

ATD(Ax − b)+,

where Q ′ := {y ∈ Rm : y ≤ D 1
2 b}, and is not equivalent in general

to LA{PQ}(x).
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Linear Split Feasibility Problem

Theorem
Let w ∈ ∆m and I (w) := {i : wi > 0}. It holds

1
m
≤ wj := max{wi : i = 1, 2, ...,m} ≤ λmax(ATDA) ≤ 1.

Moreover,

If λmax(ATDA) = wj then aj is orthogonal to all ai , i ∈ I (w), i 6= j ;
If the system {ai : i ∈ I (w)} is orthogonal then λmax(ATDA) = ωj ;
λmax(ATDA) = 1 if and only if the system A(w) := {ai : i ∈ I (w)}
is collinear, i.e., ai = αia1 for some αi , i ∈ I (w).

Corollary

The Landweber operator L
D
1
2 A
{PQ ′} is an extrapolation of the

simultaneous projection operator P. Moreover, if the system A(w) is
not collinear then L

D
1
2 A
{PQ ′} is a strict extrapolation of P.
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Linear Split Feasibility Problem

Example

m = 2, A has normed rows a1, a2 and w = (w1, 1− w1), ω1 ∈ [0, 1],
α = ^(a1, a2).

λmax(ATDA) = (1+
√
1− 4w1(1− w1) sin2 α)/2.

1

1.5

2

0

1

3

alpha

0
0.2

0.4

0.8
1

w_1

The extrapolation parameter
σ = 1

λmax(ATDA)
as a function of

the weight ω1 and the angle α
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Linear Split Feasibility Problem

Example (continuation)

Andrzej Cegielski (Zielona Góra, Poland), A joint work with Simeon Reich and RafałZalas The Second Fraunhofer Workshop on Projection Methods in Feasibility, Superiorization and Optimization - Theory and Practice ()On the Regularity of the Landweber Transform August, 26th, 2020 20 / 26



Linear Split Feasibility Problem

Example (continuation)

Andrzej Cegielski (Zielona Góra, Poland), A joint work with Simeon Reich and RafałZalas The Second Fraunhofer Workshop on Projection Methods in Feasibility, Superiorization and Optimization - Theory and Practice ()On the Regularity of the Landweber Transform August, 26th, 2020 21 / 26



Linear Split Feasibility Problem

Example

A – an m× n matrix with normed rows ai , and δ := aTi aj , i 6= j ,
wi = 1

m , i = 1, 2, ...,m.

0

2

4
sigma

0.2 0.2 0.4 0.6 0.8 1delta

The extrapolation parameter σ := 1
λmax(ATDA)

as a function of δ for
m = 6
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Extrapolated Landweber Operator for Linear Inequalities

Let the extrapolation function σ : Rn → R+ be defined by

σ(x) =

{
(Ax−b)T+D (Ax−b)+
‖ATD (Ax−b)+‖2 if Ax 
 b

1 if Ax ≤ b

Then σ(x) ≥ 1
λmax(ATDA)

≥ 1 and the operator

UD (x) = x − σ(x)ATD(Ax − b)+
is an extrapolation of the Landweber operator

L
D
1
2 A
{PQ ′}(x) := x − 1

λmax(ATDA)
ATD(Ax − b)+

VDx is a linearly regular cutter. Thus, for any λ ∈ (0, 2) the method

xk+1 = UD ,λ(x
k )

converges linearly to a solution of Ax ≤ b.
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Thank you for your attention!
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