Stochastic Gradient Descent

Pontus Giselsson

Finite sum problems

Finite sum problems

Yesterday, you saw problems of the form
minimize f(x) + g(z)

where

® fis smooth (and potentially convex)
® g is nonsmooth and convex

Algorithm: proximal gradient method
Sometimes there is additional structure, we will treat

N
minimize Z fi(x)
i=1
f(2)
where f is of finite sum form (and g =0)
Can be solved by gradient method

If N is large, stochastic gradient descent is often preferrable

Why finite sum?

Finite sum problems appear naturally, e.g., in supervised learning

What is supervised learning?

® Let (x,y) represent object and label pairs
® Objectz € X CR"
° LabelyengK
® Available: Labeled training data (training set) { (s, v:)}¥,

® Data x; € R", or examples (often n large)
® Labels y; € R™, or response variables (often K = 1)

Objective: Find a model (function) m(z):

® that takes data (example, object) z as input

® and predicts corresponding label (response variable) y
How?:

® learn m from training data, but should generalize to all (x,y)

Relation to optimization

Training the “machine” m consists in solving optimization problem

Regression vs Classification

There are two main types of supervised learning tasks:

® Regression:

® Predicts quantities
® Real-valued labels y € ¥ = R¥ (will mainly consider K = 1)

e (Classification:

® Predicts class belonging
® Finite number of class labels, e.g., y € Y ={1,2,...,k}

Regression training problem

® Objective: Find data model m such that for all (z,y):
m(z) —y =0
® Let model output u = m(z); Examples of data misfit losses
L(u,y) = 3(u—y)?
L(u,y) = |u—yl

i u—y)? if lu—v| <c
Llu,y) = {c(|u —y| —c/2) else

u—-y u—-y u—-y
Square 1-norm Huber
® Training: find model m that minimizes sum of training set losses
N
minjrrlnize Z L(m(x;),yi)

i=1

Supervised learning — Least squares

Parameterize model m and set a linear (affine) structure
m(z;0) = wlz +b

where § = (w, b) are parameters (also called weights)
Training: find model parameters that minimize training cost

N

minigmize ZL(m(azl, Yi) = %Z wlz; +b—y,)?
i=1 i=1

(note: optimization over model parameters 0)

Problem is convex in 6 since L(-,y) convex and model affine

Once trained, predict response of new input = as § = w”x + b

Example — Least squares

® Find affine function parameters that fit data:

response y
*
*

variable x

Example — Least squares

® Find affine function parameters that fit data:

response y

variable x

e Data points (z,y) marked with (%), LS model wz + b (

Example — Least squares

® Find affine function parameters that fit data:

response y

variable x

e Data points (z,y) marked with (%), LS model wz + b (—)
e Least squares finds affine function that minimizes squared distance

10

Binary classification

Labels y = 0 or y = 1 (alternatively y = —1 or y = 1)
Training problem

N
mlmemlze Eil (m(ﬁﬁu)’yz)

Design loss L to train model parameters 6 such that:
® m(xz;;0) < 0 for pairs (x;,y;) where y; =0
® m(xz;;60) > 0 for pairs (x;,y;) where y; =1
Predict class belonging for new data points = with trained 6*:
® m(x;0") < 0 predict class y =0
® m(xz;0") > 0 predict class y = 1
objective is that this prediction is accurate on unseen data

11

Logistic regression

® | ogistic regression uses:
® affine parameterized model m(z;6) = w¥z 4 b (where 8 = (w, b))
® |oss function L(u,y) = log(1l + e") — yu (if labels y =0, y = 1)
® Training problem, find model parameters by solving:

N N
e . N z?w—&-b (T
minimize ;,1 L(m(z;;0),y;) = E (log(l +e) — yi(z; w+ b))

i=1

® Training problem convex in § = (w,b) since:
® model m(z;0) is affine in ¢
® |oss function L(u,y) is convex in u

N

12

Prediction

® Use trained model m to predict label y for unseen data point =

® Since affine model m(z;6) = w™x + b, prediction for = becomes:

e If wTz + b < 0, predict corresponding label y = 0
e If wTz 4+ b >0, predict corresponding label y = 1
o If wlz+b=0, predict either y =0 ory =1
® A hyperplane (decision boundary) separates class predictions:

H:={z:wlz+b=0}

13

Multiclass logistic regression

K classes in {1,..., K} and data/labels (z,y) € X x Y

Labels: y € ¥ = {e1,...,ex} where {e;} coordinate basis
® Example, K = 5 class 2: y = ez = [0,1,0,0,0]

Use one model per class m;(z;6;) for j € {1,..., K}

Objective: Find 8 = (61, ...,60k) such that for all models j:

® m;(x;0;) > 0, if label y = e; and m;(x;0;) K 0 if y # e,
Training problem loss function:

K
L(u,y) = log Ze“j —uTy
j=1

where label y is a “one-hot” basis vector, is convex in

14

Multiclass logistic regression — Training problem

e Affine data model m(x;6) = w”z + b with
w=[wy,...,wg] ER™E p=[by,...,b]T € RF
® One data model per class

my(x;01) wix + by
m(z;0) = : = :
mg (x;0K) wka + by

® Training problem:
N Ko
PP] wlaitb; | _ T (T + b
mlnl@mlzelz1 og Zle i y' (w' z; +b)
= j=

where y is “one-hot” encoding of label

® Problem is convex since affine model is used

15

Example — Linearly separable data

® Problem with 7 classes

*
* *
¥ ¥
* o oxx
* *
*
* *
* * A
. *
* *
*
*
* ¥ *
&
* * *
*
N *
*
* § KK
*:
#*
* *
g
* * *H %
o ox .
*
* *

* . *ox o ox
* * *
* *
Fax o* oy ¥ o
o, * *
* * *
*
*
" * *
e * K *
*
* *
* 3 w* * *
*
* * -
* *
* %
. ¥
* F, *
*
* o ¥ * #
* * **
* * xk *
« T x
*
*
* *
*
*
* *
*
* * 4
* N f
% * *
* * *
*
*
*
o *
*

16

Example — Linearly separable data

® Problem with 7 classes and affine multiclass model

16

Example — Quadratically separable

e Same data, new labels in 6 classes

R * * % *
*
. * . * P
O *
* * * +
* * *
* . . *
* *ox * o ox ¥ *
+ Y .
* *
% * ¥ * *
* % »* *
* +
* % % oy % "
« *
* * - * % *
N *
*
* *
. * * x ok * &
* N *
. wxx ok * — >y "
* *
*
. * L . . *
*
¥ *
* * * *
@
* " *H x *
* . o +
*
* *

data

17

Example — Quadratically separable data

e Same data, new labels in 6 classes, affine model

17

Example — Quadratically separable data

e Same data, new labels in 6 classes, quadratic model

17

Features

® Used quadratic features in last example
® Same procedure as before:

® replace data vector z; with feature vector ¢(z;)
® run classification method with feature vectors as inputs

® Model still affine in parameters, training problem still convex

18

Deep learning

® Can be used both for classification and regression

® Deep learning training problem is of the form

N
inimi L(m(x:;0),y:
mmlemlze; (m(zi;6),v:)

where typically
® L(u,y) = 1|lu—yl|3 is used for regression
® L(u,y) =log (Zle e"f) —yTuw is used for K-class classification
¢ Difference to previous convex methods: Nonlinear model m(x; 0)

® Deep learning regression generalizes least squares
® DL classification generalizes multiclass logistic regression
® Nonlinear model makes training problem nonconvex

19

Deep learning — Model

Nonlinear model of the following form is often used:

m(x;0) := Wypon_1(Wn_10n—2(--- (Waor(Wiz 4+ b1) + b2) - -+) + bn_1) + bn,
The o; are nonlinear and called activation functions

Composition of nonlinear (o;) and affine (W, () + b;) operations

Each o; function constitutes a hidden layer in the model network
Graphical representation with three hidden layers

o2()

1
\l

W
Nk
K

T

P9
G
0
PP
W
Wl
> .4 (]
SO
0’0

N

;‘\"41 e
%2// AN
;}

® Why this structure?
® (Assumed) universal function approximators
® Efficient gradient computation using backpropagation (chain rule)
20

Examples of activation functions

Name o(u) Graph
A
RelLU max(u, 0) i
LeakyReLU max(u, au) i
—
i >
ELU u if u>0
ale —1) else
—
i >
SELU if u>0 /

VK
ale* —1) else

21

Learning features

® Used prespecified feature maps (or Kernels) in convex methods

® Deep learning instead learns feature map during training
® Define parameter (weight) dependent feature vector:

d(x;0) := o1 (Who10n—2(- - - (Wao1 (Wiz+b1)+b2) - - -)+bn-1)

® Model becomes m(z;6) = Wy¢(z;6) + by,
® Inserted into training problem:

N
miniemize ; L(Wypé(4;0) + b, yi)
same as before, but with learned (parameter-dependent) features

® | earning features at training makes training nonconvex

22

Learning features — Graphical representation

® Fixed features gives convex training problems

é(xi) g
— IS
3
— =
g ¢ i
S

® | earning features gives nonconvex training problems

® Qutput of last activation function is feature vector

m(z;; 60)

23

Deep learning training problem

® Training problem:

N
miniemize Z L(m(x;;0),v;)
i=1
where typically
® L(u,y) = 1|lu—yl|3 is used for regression
® L(u,y) =log (Zle e"f) —yTu is used for K-class classification
® Model m(z;) is nonlinear

® Training problem becomes nonconvex
® |f activation functions are smooth, training problem is smooth

24

Proving convergence

25

Deterministic and stochastic algorithms

® \We have deterministic algorithms
Tpy1 = ApTp

that given initial zo will give the same sequence (2)ken
® We will also see stochastic algorithms that iterate

Try1 = Ak(&e)zr

where &, is a random variable that also decides the mapping

® (z1)ken is a stochastic process of random variables
® when running the algorithm, we evaluate &, and get a realization
® different realization (zx)ren every time even if started at same xo

® Stochastic algorithms useful although problem is deterministic

26

Types of convergence

Let =* be solution to composite problem and p* = f(z*) + g(z*)
We will see convergence of different quantities in different settings
For deterministic algorithms that generate (zx)ren, we will see

® Sequence convergence: Ty — T

® Function value convergence: f(zx) + g(zx) — p*
® |f g =0, gradient norm convergence: |V f(zx)||2 = 0

Convergence is stronger as we go up the list

First two common in convex setting, last in nonconvex

27

Convergence for stochastic algorithms

Stochastic algorithms described by stochastic process (zy)ren
When algorithm is run, we get realization of stochastic process

We analyze stochastic process and will see, e.g.,:

® Expected sequence convergence: E[||zx — 2||2] — 0
® Expected function value convergence: E[f(x) + g(zr) —p*] — 0
® If g =0, expected gradient norm convergence: E[||V f(zy)|[2] — 0

Says what happens with expected value of different quantities

28

What happens with algorithm realizations?

We will conclude that expected value of some quantity, e.g.,:

Elllzx —2*lla] or E[f(zx) +g(xr) —p] or E[|Vf(k)ll2]

converges to 0, where all quantities are nonnegative
What happens with the actual algorithm realizations?
We can make conclusions by the following result: If

® (Zy)ken is a stochastic process with Z, > 0
® the expected value E[Z;] converges to 0 as k — oo

then realizations converge to 0 almost surely (with probability 1)

That expected value of nonnegative quantity goes to 0 is strong

29

Convergence rates

We have only talked about convergence, not convergence rate
Rates indicate how fast (in iterations) algorithm reaches solution
Typically divided into:

® Sublinear rates

® Linear rates (also called geometric rates)
® Quadratic rates (or more generally superlinear rates)

Sublinear rates slowest, quadratic rates fastest
Linear rates further divided into Q-linear and R-linear
Quaderatic rates further divided into Q-quadratic and R-quadratic

30

Linear rates

A Q-linear rate with factor p € [0,1) can be:

f@ri1) + 9(@rgr) — p* < p(f(xr) + g(zr) — p*)
Ellzkr1 — 2*[|2] < pE[[|lzx, — 2|2

An R-linear rate with factor p € [0,1) and some C > 0 can be:

lz — 2|2 < p*C

this is implied by Q-linear rate and has exponential decrease
Linear rate is superlinear if p = pi and pr — 0 as k — oo
Examples:

(Accelerated) proximal gradient with strongly convex cost
Randomized coordinate descent with strongly convex cost
BFGS has local superlinear with strongly convex cost

but SGD with strongly convex cost gives sublinear rate

31

Linear rates — Comparison

® Different rates in log-lin plot

10° T T T T p= 0.99
il I — p=096
p=0.93
102 ¢
— p=10.90
10°F E
104 E
10°F E
10°¢ - - - -
0 200 400 600 800 1000

® (Called linear rate since linear in log-lin plot

32

Quadratic rates

® Q-quadratic rate with factor p € [0,1) can be:

f(@es) + g(@rgn) — 0" < p(f (k) + g(zx) — p*)?

ks — a2 < plle — 27|13
® R-quadratic rate with factor p € [0,1) and some C > 0 can be:
le — 2*[|l2 < p*"C

® Quadratic (p?*) vs linear (p*) rate with factor p = 0.9:

uadratic Linear
1 800000000000 1.080000000000
0739000000000 (270000000000
0] 1217828?799800 0.%2980002g000
i, o
0.001310019380 0.531440964000
0.000001544535 0.478296936000
0.000000000002 0.430467270000

® Example: Locally for Newton's method with strongly convex cost

33

Quadratic rates — Comparison

® Different rates in log-lin scale

10°

1 2 3 4 5 6 7 8 9 10

® Quadratic convergence is superlinear

— p =099
— p =096

p=0093
— p=0.90

34

Sublinear rates

® A rate is sublinear if it is slower than linear

® A sublinear rate can, for instance, be of the form

IN
Q

f(wg) +g(wg) — p*
[@rt1 — zll3

. T
l:rg}$}’kE[||Vf(lz)|lz}

<
~

Sl
N

IN
<
o

(k

Z

I
<
o

(k)

where C > 0 and v decides how fast it decreases, e.g.,

(k) = log k: Stochastic gradient descent v, = ¢/k

(k) = V/k: Stochastic gradient descent: optimal

(k) = k: Proximal gradient, coordinate proximal gradient
d w() = k?: Accelerated proximal gradient method

with improved rate further down the list
® We say that the rate is O() for the different 1

® To be sublinear ¢ has slower than exponential growth as

35

Sublinear rates — Comparison

® Different rates on log-lin scale

10° r r r r 1

log
1
vk

102 1
k
1
k2

10

10°°

10 -8 L L L T

0 2000 4000 6000 8000 10000

® Many iterations may be needed for high accuracy

36

Proving convergence rates

® To prove a convergence rate typically requires

® Using inequalities that describe problem class
® Using algorithm definition equalities (or inclusions)
® Combine these to a form so that convergence can be concluded

® Linear and quadratic rates proofs conceptually straightforward

® Sublinear rates implicit via a Lyapunov inequality

37

Proving linear or quadratic rates

® |f we suspect linear or quadratic convergence for Vi, > 0:
Vierr < pVy!
where p € [0,1) and p=1 or p =2 and V}, can, e.g., be
Vi =llze —a*ll2 or Vi = f(ar) +g(xp) —p" or Vi =|[IVf(zi)l2

® Can prove by starting with Vi1 (or Vi2,;) and continue using

® function class inequalities
® algorithm equalities

® propeties of norms
[]

38

Sublinear convergence — Lyapunov inequality

® Assume we want to show sublinear convergence of some Ry > 0

® This typically requires finding a Lyapunov inequality:
Virr < Vi + Wy — Ry,

where
® (Vi)ken, (Wi)ken, and (Ry)ken are nonnegative real numbers

® (Wk)ken is summable, i.e.,, W =372 Wi < 00
® Such a Lyapunov inequality can be found by using

® function class inequalities
® algorithm equalities

® propeties of norms
[]

Lyapunov inequality consequences

® From the Lyapunov inequality:
Vierr < Vi + Wy — Ry,

we can conclude that
® V} is nonincreasing if all W, =0
® V, converges as k — oo (will not prove)
® Recursively applying the inequality for [€ {k,...,0} gives
k k k
Vir1 < Vo+ZWl —ZRz <Vo+W — ZRZ
1=0 1=0 1=0

where W is infinite sum of Wy, this implies

k k k
S R<Vo—Vipr+> Wi<Vo+ > Wi <Vo+W

=0 =0 =0

from which we can
® conclude that Ry — 0 as k — oo since Ry > 0
® derive sublinear rates of convergence for R towards 0
40

Concluding sublinear convergence

® | yapunov inequality consequence restated

k k
ZR1§V0+ZW1§V0+W

1=0 =0

® \We can derive sublinear convergence for
® Best Ry: (k+ 1) mineqo,.. xy R < Zf:o R
® Last Ry, (if Ry decreasing): (k+1)R, < 31 Ry
* Average Ry: Ry = 117 S R

e Let Ry be any of these quantities, and we have

& _
Rk < Zl:oRl < o+ W
k+1 k+1

which shows a O(1/k) sublinear convergence

41

Deriving other than O(1/k) convergence (1/3)

® Other rates can be derived from a modified Lyapunov inequality:
Vi1 < Vi + Wi — ARy

with A > 0 when we are interested in convergence of Ry, then

k k
DNR S VoY Wi<Vo+ W
1=0 =0

® To have R, — 0 as k — oo we need >, A\ = 00

42

Deriving other than O(1/k) convergence (2/3)

® Restating the consequence: Zf:o MR < Vo+W

® \We can derive sublinear convergence for
® Best Ry: minle{ow,k} R; Z;C:O A < 27:0 MRy
® Last Ry (if Ry decreasing): Ry Y) oM < S o MR
® Weighted average Ry: Ry = fm S MR

e Let Ry be any of these quantities, and we have

Ry Zl oRl VO+W
Zz —0A Zl 0

43

Deriving other than O(1/k) convergence (3/3)

® How to get a rate out of:
. Vo+ W
R < S
leo Al

® Assume (k) < Zf:() Ar, then 9 (k) decides rate:

Zz oRl Vo +W
Ry < <
Yioh — W(R)

which gives a O(ﬁ) rate

® If A\ = cis constant: ¥ (k) = c¢(k + 1) and we have O(1/k) rate
® If Ay is decreasing: slower rate than O(1/k)
® If A is increasing: faster rate than O(1/k)

44

Estimating ¢ via integrals

® Assume that A\ = ¢(k), then (k) < Z;C:o @(1) and

Z[oRl < VO+W
Zz od(D) — (k)

® To estimate 1, we use the integral inequalities
® for decreasing nonnegative ¢:

k

k
[ot + o0 <o < [otar+ o0

® for increasing nonnegative ¢:

k k
¢)dt + ¢(0 Z /O o(t)dt + p(k)

t=0

® Remove ¢(k), $(0) > 0 from the lower bounds and use estimate:

k k
= o<y o)
t=0 1=0

45

Sublinear rate examples

® For Lyapunov inequality Vi1 < Vi + Wy — ARy, we get:

R < V(;}_(’_kfv where A = ¢(k) and Y(k / o(t)

® | et us quantify the rate ¥ in a few examples:
® Two examples that are slower than O(1/k):
®)\, =¢(k)=c/(k+1) gives slow O(ﬁ) rate:
k
P(k) = / tidt = cflog(t + 1)]¥_y = clog(k + 1)
ot+1
®)\, =¢(k)=c/(k+1)* for « € (0,1), gives faster O(kl%a) rate:
k c 1—a

_ _ D) ko
v = [ot = el e =

® An example that is faster than O(1/k)
® A\ = ¢(k) = c(k + 1) gives O(k%) rate:

e (k+ 17 =1

k
wuc):/t el D)t = e3¢+ 1) = $(h+ D -)

46

Stochastic setting and law of total expectation

In the stochastic setting, we analyze the stochastic process
Tr1 = Ak(k)ms
We will look for inequalities of the form
E[Vit1lzg) < E[Vi|zk] + E[Wi|zk] — E[Ry|xk]

to see what happens in one step given x; (but not given &)
We use law of total expectation E[E[X|Y]] = E[X] to get

E[Vit1] < E[Vi] + E[Wy] — E[Ry]

which is a Lyapunov inequality

We can draw rate conclusions, as we did before, now for E[Ry]

47

Stochastic gradient descent

48

Proximal gradient method

® Proximal gradient method solves problems of the form

minimize f(x) + g(x)

where (at least in our analysis)
® f:R" — R is B-smooth (not necessarily convex)
® g:R" - RU{oo} is closed convex
® For large problems, gradient is expensive to compute
= replace by unbiased stochastic approximation of gradient

49

Unbiased stochastic gradient approximation

® Stochastic gradient:
® estimator V f(z) outputs R™-valued random variable
® realization V f(z) : R® — R" outputs a realization in R"

® An unbiased stochastic gradient approximator @f satisfies
EVf(z) = Vf(z)
® If x is random variable (as in SGD) an unbiased estimator satisfies

E[Vf(z)la] = V f(x)

50

Stochastic gradient descent (SGD)

Consider SGD for solving minimize,, f(z)
The following iteration generates (xx)ren of random variables:

Tht1 = T — ’Ykﬁf(xk)

since @f outputs random R™-valued variables

Stochastic gradient descent finds a realization of this sequence:

Th4+1 = Tk — Vkﬁf(xk)

where (x)gen here is a realization which is different every time
Sloppy in notation for when x is random variable vs realization
Can be efficient if realizations %f much cheaper than V f

51

Stochastic gradients — Finite sum problems

e Consider finite sum problems of the form

N
Ininimmize + <Z fz(x)>

=1

f(@)

where (4 is for convenience and)

® all f; : R™ — R are B;-smooth (not necessarily convex)
® f:R"™ — Ris S-smooth (not necessarily convex)

® Training problems of this form, where sum over training data

® Stochastic gradient: select f; at random and take gradient step

52

Single function stochastic gradient

Let I be a {1,..., N}-valued random variable
Let, as before, @f denote the stochastic gradient estimator

Realization: let 2 be drawn from probability distribution of I
Vf(z) =V fi(z)

where we will use uniform probability distribution

2|~

pi=pll =1i) =

Stochastic gradient is unbiased:

N N
EIVS @] = 3o piVhile) = & 3 Vhile) = V(@)

53

Mini-batch stochastic gradient

® Example: 2-sample mini-batches and N = 4:

Let B be set of K-sample mini-batches to choose from:

B = {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}

® Number of mini batches (Z) each item in (K 1) batches

Let B be B-valued random variable

=+ Vi)

i€B

where we will use uniform probability distribution

pp =pB=B) =
® Stochastic gradient is unbiased:
(XD 5
EY f(x oy 2 & 2 V@) = 5 > Vi) =
BeB i€B K7 =1

Let, as before, @f denote stochastic gradient estimator
Realization: let B be drawn from probability distribution of B

> " Vfi(z) = Vf(2)

=1

54

Stochastic gradient descent for finite sum problems

® The algorithm, choose xy € R™ and iterate:
1. Sample a mini-batch By € B of indices uniformly (prob. ﬁ)
2. Run
Ty = ok — 2 > Vij(an)
JEBy
® Of course, can have B = {1,..., N} and sample only one function

® Gives realization of underlying stochastic process

How about convergence?

55

SGD - Example

eletc; +ca+c3=0
e Solve minimize, (L ([|lz — c1/|3 + |2 — 2|3 + ||z — c313) = 2|2]13 + ¢

e Stochastic gradient method with v, =1/3

Levelsets of summands Levelset of sum

56

SGD - Example

eletc; +ca+c3=0
e Solve minimize, (L ([|lz — c1/|3 + |2 — 2|3 + ||z — c313) = 2|2]13 + ¢

e Stochastic gradient method with v, = 1/k

Levelsets of summands Levelset of sum

56

SGD - Example

eletc; +ca+c3=0
e Solve minimize, (L ([|lz — c1/|3 + |2 — 2|3 + ||z — c313) = 2|2]13 + ¢
e Gradient method with v, = 1/3

©

Levelsets of summands Levelset of sum

e SGD will not converge for constant steps (unlike gradient method)
56

Fixed step-size SGD does not converge to solution

® We can at most hope for finding point Z such that
0=Vf(z)

i.e., the proximal gradient fixed-point characterization
® Assume xy such that 0 = V f(xy)
® That 0 = Vf(z) does not imply 0 = V f;(z) for all f;, hence
Tpy1 = ok — WV fi(Tr) # Tk

i.e., will move away from prox-grad fixed-point for fixed ~; > 0
® Need diminishing step-size rule to hope for convergence

57

Polyak-Ruppert averaging

® Polyak-Ruppert averaging:
® Qutput average of iterations instead of last iteration

® Example: SGD with constant steps and its average sequence

SGD with constant step-size Average of SGD sequence

58

Nonconvex setting — Assumptions
® \We consider problems of the form
minimize f(z)

® Assumptions:

(#) f:R"™ = Ris B-smooth, for all z,y € R™:

f@) < f@) + Vi) (y—2)+ 2y — 3

(7¢) Stochastic gradient of f is unbiased: E[@f(ac)bc] =Vf(x)
(#47) Variance is bounded: E[H@f(:c)ﬂgm < |IVF()|3 + M?
(v) No nonsmooth term, i.e., g =0

v) A minimizer exists and p* = min, f(z) is optimal value

(vi) Step-sizes satisfy > oo K = 00 and > po Yk < 0©

® Comments:
® (iii): variance is bounded by M? since

E[|[Vf(@)l3l] = Var[|V f(z) 2]2] + |E[V f (z)|2]3
= Var[[|Vf (2)||zl2] + |V £ ()13
® (iii): analysis is slightly simpler if assuming E[||V f(z)|3|z] < G

Nonconvex setting — Analysis

® Upper bound on f in Assumption (i) gives
E[f (zh41)]ax]
< E[f(zr) + V(1) (@1 — or) + §llznsr — zill3lza]
= f(zx) = wVf(zr)'E [ﬁf(ka)l + R[S £ (o) |3lex]
< flak) =V f o)V f) + ZE(V f ()5 + M?)
= Flar) = w1 - i)ﬂwmk)uw%w

K]+

® lety < % (true for large enough k since v, summable):

E[f (zer) s < Flax) — BV @)l + 2202

® Subtracting p* from both sides gives

Elf (zhs1) 2] — p* < f(m) — p* — BV ()l + 22 M2

60

Total expectation

® Taking total expectation gives Lyapunov inequality

E[f (z141)] — p* < E[f(wx)] — p* — BE[|V () [|Z]) + 22 M2
N——

Vi +1 Vi Ry, Wy

e Consequences:

® Vi, =E[f(zr)] — p* converges (not necessarily to 0)
A 27:0 R < Vo + Zf:o Wk, which, when multiplied by 2 gives

D> wENV)3 < 2(f(w0) —p*) + Y A BM?
=0

= =1

61

Minimum gradient bound tradeoff

® The Lyapunov inequality tells us that

k k
D AE(IVF@)l[5] < 2(f(w0) —p*) + Y A7 BM?

=0 =1

® Using that

k k
lr(r)nn E[|V f(z:)|3] ; Z(; WE[|V £ (21)]3)

we conclude that the minimum gradient norm satisfies

* k
min E[||Vf(xl)||] < 2(f(zo) —p)k‘f‘ >0V BM?
1=0,..., SF o

where terms in the numerator:
® 2(f(zo) — p*) is due to initial suboptimality
° Zf:o ~2BM? is due to noise in gradient estimates

(if M =0, use vy, = % to recover (proximal) gradient bound)

62

Minimum gradient convergence

® \What conclusions can we draw from

2(f(x0) — p*) + Y1 12 BM?
Ef:o Vi

® Let C'=)2,77 < oo (finite since (77)kxen summable) then

. 2
lzrg{}y}’kE[IIVf(sz)llz] <

2f(0) — ") + CBM?
Z?:o "

as k — oo since (k) ken is not summable

. ; 21 <
l:rglv}p’kE[HVf(rz)llz] <

® Consequences:
® Smallest expected value of gradient norm square converges to 0
® We don't know what happens with latest expected value
® Gradient converges to 0 for algorithm realizations almost surely

63

Convexity and strong convexity

® |f we in addition assume convexity, we can show

k
o — 213 + Sy 020

R, < =
2 Zz;o Vi

where

Re= min B[f@e0) = f")] or Ry =Elf(@)— f(z")
and Ty is an average of previous iterates
® Smallest or average function value converges to f(z*)
® in expectation
® for algorithm realizations with probility 1
® no last iterate convergence bound
® Assumption: f smooth and strongly convex

® Proximal gradient method achieves linear convergence
® Stochastic gradient descent does not achieve linear convergence

64

Convergence results

e Convergence in nonconvex and convex settings are:

k 2
Ry < —VO +D;€Zl:0%
b =0
for different Vi, D, and b and Ry,

® Same dependance on step-size

® What step-sizes can we use and have convergence?

65

Step-size requirements

® We shift indices k& and [by one to start algorithm with £ =1
e Step-sizes: » =, 77 < o0 and Y_,°, v = oo make upper bound

k
< Vi+DY N

Ry <
b Zf:l f}/l

0
as k — oo

® Step-size choices that satisfy assumptions:

® v = c/k for some ¢ >0
® v, =c/k for a € (0.5,1)

]./kO‘G
1k

66

Estimating rates via integrals

For convergence need to verify > ;° v = o0 and Y =, 77 <
To estimate rates we need to estimate 3", 4 and Y5, 72
Assume ~y; = ¢(1) with decreasing and nonnegative ¢ : R, — R

Then we can estimate using integrals

k

k k
o(t)dt + p(k Z o0+ (1)

t=1

We can also remove ¢(k) from lower bound to simplify

67

Estimating rates — Example v, = ¢/k

® Let v = ¢(k) with ¢(k) = ¢/k and estimate the sum

k k
C
Sz [Gt = cllogltli, = clog(h)
=1 =1

(which diverges as k — oo as required) and the finite sum

k k2
Soob s [Gate o) = Flii, 4 =2 -1y < 2
=1 t=1

® \We use these to arrive at the following rate when v, = ¢/k:

Vi+DYF 2 < Vi+2Dc* Vi/c+2Dc

Ry < < =
bzle v belog k blogk

so we have O(1/logk) convergence, which is slow
® The constant c trades off the two constant terms V; and D
68

Estimating rates — Example v, = ¢/k”

® Let v = ¢(k) with ¢(k) = ¢/k* and o € (0.5,1) and estimate

k k

& l-a. _
> 2[gdt = =gl = kT -
=1 =

(which diverges as k — oo since slower than 1/k) and the sum

k E 2
C 1—2a 2
Z’}/? S / . t270/dt + ¢(1)2 = C2[t17ﬁ}i€:1 + C2 S 2(;771 + C2 = C2C
=1 t=

where the last inequality holds since o > 0.5
® We use these to arrive at the following rate when ~y, = ¢/k*:

R < L DEL0F (L= a)(Vi/e+ DC)
) D R b(k'=> —1)
so we have O(1/k'=?) rate with a € (0.5, 1)

® Rate improves with smaller « and 1/k'~* — vk as a — 0.5
69

Refining the step-size analysis

® Have not assumed Zloil fyf finite for general convergence bound

k
Vi+D) 712
k
b m

® \We can divide the sum into two parts

Ry,

IA

V; D
Ry < !

B bezl')’l b%’ L
l 1

Ez 1’Yl
Zz 17

(don't need 3y, 77 < oo for Ry — O)

'SoRkHOifozlfyl%ooand — 00

70

Refined step-size analysis interpretation

_ vk _ X .
® Let o1 (k) =>_,_; v and 92 (k) and restate bound:

= <k
PO

\%1 D
by (k) " bia (k)
® ¢ decides how fast V; (f(z) — p* or ||z — x*||2) is supressed
® 1)y decides how fast D is supressed, where D can be

® G? if assumption E[Hif(w)”%\w] <G?

® M? if assumption E[||V f(z)|3|z] < ||V f(2)|3 + M?
® There is a tradeoff between supressing these quantities

Ry, <

® For previous step-size choices, 11 is slower

Will present step-sizes where 15 is slower
® Actual convergence very much dependent on constants V7 and D

71

Estimating rates — Example v, = ¢/Vk

® \We know from before that

k k
S =Y e/k0% > 2e(VE — 1) ~ 2eVk
=1

=1

and that the sum of step-sizes does not converge, but satisfies

k k
Z'y? < ZCQ/IC = c?log(k)
=1 1=1

. k k
e Since >, vi/ >, 1}F converges, also Ry converges as

Vi Dc

R <71+7
"= vk bl

with rate O(log k/Vk)

72

Estimating rates — Example ~;, = ¢/k*

® Let now o € (0,0.5) for which 7y is not square summable
® We know form before that

Z%

and the squared sum does not converge, but satisfies

-1

k

2 2
ZW?SC2[1 } 1+C (kl 2&_1)_’_02: 1£2a(k1 2 —20[)
=1

® We use these to arrive at the following rate when ~y, = ¢/k*:
Ry < (I-a)W (1- “)lﬂi
20c(kl=> —1) * b(1 — 20) Epa=d

Fl2a_o4

with rate (ignoring constant terms) is worst of
O(1/k'™) and OQ/kE'™2/E'72%) = O(1/k®)

which is the latter since « € (0,0.5)
® Rate improves with larger o and k% — vk as a — 0.5 73

How about fixed step-size

Algorithms run in practice a finite number of iterations K
What happens with fixed-step size scheme after K steps?
We fix v, =5 = /v K with € > 0 to be the same for all k

Our convergence result says:

_Vi+DYE 9 Vit DEy? Vit D6

R -
BETOYE bK7 N,

Comments:

get /K convergence rate until iteration K

but Ry will not converge to 0 as k — oo

that v, = 8/+/K holds for every fixed step-size for some 0
actual convergence very much dependent on Vi, D, and 6

74

Rate comparison

Stochastic gradient v, = 1/k“

Setting Gradient
a=1 a€(0,5,1) a=05 «a€(0,0.5)
Nonconvex O(%) O(ﬁgk) O(kl%a) O(lc\)ﬁ’;) O(k%)
Convex O(3) O(mtp) OGrss) 0(13%;) O(%)
linear sublinear sublinear sublinear sublinear

Strongly convex

® Stochastic gradient descent slower in all settings
® However, every iteration in stochastic gradient descent cheaper

75

Finite sum comparison

® \\e consider

N
minimize Z fi(z)
i=1
where N is large and use one f; for each stochastic gradient
® N iterations of stochastic gradient is at cost of 1 full gradient

® Progress after k epochs (stochastic) vs k iterations (full):

Setting Gradient Stochastic gradient v, = 1/k“
a=1 a € (0,5,1) a=0.5 a € (0,0.5)
Nonconvex o(31) O(loglNk) O((Nkilfﬂ) O(i‘fﬁ’%’;) O(W)
Covex O(}) Olvr) Olgpr=s) O(%XE) O(phys)

76

Finite sum comparison — Quantification

Assume that finite sum of IV equals 10 million summands

Computational budget is that we run k = 10 iterations/epochs

Replacing ordo expressions with numbers:

Setting Gradient Stochastic gradient v, = 1/k“
a=1 a=075 a=05 a=0.25
Nonconvex 0.1 0.054 0.01 0.0018 0.01
Convex 0.1 0.054 0.01 0.0018 0.01

Stochastic gives better ordo-rates (but constants are worse)

Significant difference within stochastic methods, v, = ﬁ best

Actual performance depends a lot on relation between constants

7

Thanks for your attention

® Most slides from Optimization for Learning at Lund University

https://canvas.education.lu.se/courses/7714

® Short “flipped classroom” style videos available for many topics

http://www.control.lth.se/fileadmin/control/
Education/EngineeringProgram/FRTN50/VideoPlatform/
VideoLecturePlatform.html

78

https://canvas.education.lu.se/courses/7714
http://www.control.lth.se/fileadmin/control/Education/EngineeringProgram/FRTN50/VideoPlatform/VideoLecturePlatform.html
http://www.control.lth.se/fileadmin/control/Education/EngineeringProgram/FRTN50/VideoPlatform/VideoLecturePlatform.html
http://www.control.lth.se/fileadmin/control/Education/EngineeringProgram/FRTN50/VideoPlatform/VideoLecturePlatform.html

