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Finite sum problems



Finite sum problems

Yesterday, you saw problems of the form
minimize f(x) + g(z)

where

® fis smooth (and potentially convex)
® g is nonsmooth and convex

Algorithm: proximal gradient method
Sometimes there is additional structure, we will treat

N
minimize Z fi(x)
i=1
f(2)
where f is of finite sum form (and g =0)
Can be solved by gradient method

If N is large, stochastic gradient descent is often preferrable



Why finite sum?

Finite sum problems appear naturally, e.g., in supervised learning



What is supervised learning?

® Let (x,y) represent object and label pairs
® Objectz € X CR"
° LabelyengK
® Available: Labeled training data (training set) { (s, v:)}¥,

® Data x; € R", or examples (often n large)
® Labels y; € R™, or response variables (often K = 1)

Objective: Find a model (function) m(z):

® that takes data (example, object) z as input

® and predicts corresponding label (response variable) y
How?:

® learn m from training data, but should generalize to all (x,y)



Relation to optimization

Training the “machine” m consists in solving optimization problem



Regression vs Classification

There are two main types of supervised learning tasks:

® Regression:

® Predicts quantities
® Real-valued labels y € ¥ = R¥ (will mainly consider K = 1)

e (Classification:

® Predicts class belonging
® Finite number of class labels, e.g., y € Y ={1,2,...,k}



Regression training problem

® Objective: Find data model m such that for all (z,y):
m(z) —y =0
® Let model output u = m(z); Examples of data misfit losses
L(u,y) = 3(u—y)?
L(u,y) = |u—yl

i u—y)? if lu—v| <c
Llu,y) = {c(|u —y| —c/2) else

u—-y u—-y u—-y
Square 1-norm Huber
® Training: find model m that minimizes sum of training set losses
N
minjrrlnize Z L(m(x;),yi)

i=1



Supervised learning — Least squares

Parameterize model m and set a linear (affine) structure
m(z;0) = wlz +b

where § = (w, b) are parameters (also called weights)
Training: find model parameters that minimize training cost

N

minigmize ZL(m(azl, Yi) = %Z wlz; +b—y,)?
i=1 i=1

(note: optimization over model parameters 0)

Problem is convex in 6 since L(-,y) convex and model affine

Once trained, predict response of new input = as § = w”x + b



Example — Least squares

® Find affine function parameters that fit data:

response y
*
*

variable x



Example — Least squares

® Find affine function parameters that fit data:

response y

variable x

e Data points (z,y) marked with (%), LS model wz + b (



Example — Least squares

® Find affine function parameters that fit data:

response y

variable x

e Data points (z,y) marked with (%), LS model wz + b (—)
e Least squares finds affine function that minimizes squared distance
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Binary classification

Labels y = 0 or y = 1 (alternatively y = —1 or y = 1)
Training problem

N
mlmemlze Eil (m(ﬁﬁu )’yz)

Design loss L to train model parameters 6 such that:
® m(xz;;0) < 0 for pairs (x;,y;) where y; =0
® m(xz;;60) > 0 for pairs (x;,y;) where y; =1
Predict class belonging for new data points = with trained 6*:
® m(x;0") < 0 predict class y =0
® m(xz;0") > 0 predict class y = 1
objective is that this prediction is accurate on unseen data
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Logistic regression

® | ogistic regression uses:
® affine parameterized model m(z;6) = w¥z 4 b (where 8 = (w, b))
® |oss function L(u,y) = log(1l + e") — yu (if labels y =0, y = 1)
® Training problem, find model parameters by solving:

N N
e . N z?w—&-b (T
minimize ;,1 L(m(z;;0),y;) = E (log(l +e ) — yi(z; w+ b))

i=1

® Training problem convex in § = (w,b) since:
® model m(z;0) is affine in ¢
® |oss function L(u,y) is convex in u

N
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Prediction

® Use trained model m to predict label y for unseen data point =

® Since affine model m(z;6) = w™x + b, prediction for = becomes:

e If wTz + b < 0, predict corresponding label y = 0
e If wTz 4+ b >0, predict corresponding label y = 1
o If wlz+b=0, predict either y =0 ory =1
® A hyperplane (decision boundary) separates class predictions:

H:={z:wlz+b=0}
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Multiclass logistic regression

K classes in {1,..., K} and data/labels (z,y) € X x Y

Labels: y € ¥ = {e1,...,ex} where {e;} coordinate basis
® Example, K = 5 class 2: y = ez = [0,1,0,0,0]

Use one model per class m;(z;6;) for j € {1,..., K}

Objective: Find 8 = (61, ...,60k) such that for all models j:

® m;(x;0;) > 0, if label y = e; and m;(x;0;) K 0 if y # e,
Training problem loss function:

K
L(u,y) = log Ze“j —uTy
j=1

where label y is a “one-hot” basis vector, is convex in

14



Multiclass logistic regression — Training problem

e Affine data model m(x;6) = w”z + b with
w=[wy,...,wg] ER™E p=[by,...,b]T € RF
® One data model per class

my(x;01) wix + by
m(z;0) = : = :
mg (x;0K) wka + by

® Training problem:
N Ko
PP ] wlaitb; | _ T (T + b
mlnl@mlzelz1 og Zle i y' (w' z; +b)
= j=

where y is “one-hot” encoding of label

® Problem is convex since affine model is used
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Example — Linearly separable data

® Problem with 7 classes
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Example — Linearly separable data

® Problem with 7 classes and affine multiclass model
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Example — Quadratically separable

e Same data, new labels in 6 classes
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Example — Quadratically separable data

e Same data, new labels in 6 classes, affine model
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Example — Quadratically separable data

e Same data, new labels in 6 classes, quadratic model
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Features

® Used quadratic features in last example
® Same procedure as before:

® replace data vector z; with feature vector ¢(z;)
® run classification method with feature vectors as inputs

® Model still affine in parameters, training problem still convex
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Deep learning

® Can be used both for classification and regression

® Deep learning training problem is of the form

N
inimi L(m(x:;0),y:
mmlemlze; (m(zi;6),v:)

where typically
® L(u,y) = 1|lu—yl|3 is used for regression
® L(u,y) =log (Zle e"f) —yTuw is used for K-class classification
¢ Difference to previous convex methods: Nonlinear model m(x; 0)

® Deep learning regression generalizes least squares
® DL classification generalizes multiclass logistic regression
® Nonlinear model makes training problem nonconvex
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Deep learning — Model

Nonlinear model of the following form is often used:

m(x;0) := Wypon_1(Wn_10n—2(--- (Waor(Wiz 4+ b1) + b2) - -+ ) + bn_1) + bn,
The o; are nonlinear and called activation functions

Composition of nonlinear (o;) and affine (W, () + b;) operations

Each o; function constitutes a hidden layer in the model network
Graphical representation with three hidden layers

o2()
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® Why this structure?
® (Assumed) universal function approximators
® Efficient gradient computation using backpropagation (chain rule)
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Examples of activation functions

Name o(u) Graph
A
RelLU max(u, 0) i
LeakyReLU max(u, au) i
—
i >
ELU u if u>0
ale —1) else
—
i >
SELU if u>0 /

VK
ale* —1) else
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Learning features

® Used prespecified feature maps (or Kernels) in convex methods

® Deep learning instead learns feature map during training
® Define parameter (weight) dependent feature vector:

d(x;0) := o1 (Who10n—2(- - - (Wao1 (Wiz+b1)+b2) - - - )+bn-1)

® Model becomes m(z;6) = Wy¢(z;6) + by,
® Inserted into training problem:

N
miniemize ; L(Wypé(4;0) + b, yi)
same as before, but with learned (parameter-dependent) features

® | earning features at training makes training nonconvex
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Learning features — Graphical representation

® Fixed features gives convex training problems

é(xi) g
— IS
3
— =
g ¢ i
S

® | earning features gives nonconvex training problems

® Qutput of last activation function is feature vector

m(z;; 60)

23



Deep learning training problem

® Training problem:

N
miniemize Z L(m(x;;0),v;)
i=1
where typically
® L(u,y) = 1|lu—yl|3 is used for regression
® L(u,y) =log (Zle e"f) —yTu is used for K-class classification
® Model m(z; ) is nonlinear

® Training problem becomes nonconvex
® |f activation functions are smooth, training problem is smooth
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Proving convergence
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Deterministic and stochastic algorithms

® \We have deterministic algorithms
Tpy1 = ApTp

that given initial zo will give the same sequence (2)ken
® We will also see stochastic algorithms that iterate

Try1 = Ak(&e)zr

where &, is a random variable that also decides the mapping

® (z1)ken is a stochastic process of random variables
® when running the algorithm, we evaluate &, and get a realization
® different realization (zx)ren every time even if started at same xo

® Stochastic algorithms useful although problem is deterministic

26



Types of convergence

Let =* be solution to composite problem and p* = f(z*) + g(z*)
We will see convergence of different quantities in different settings
For deterministic algorithms that generate (zx)ren, we will see

® Sequence convergence: Ty — T

® Function value convergence: f(zx) + g(zx) — p*
® |f g =0, gradient norm convergence: |V f(zx)||2 = 0

Convergence is stronger as we go up the list

First two common in convex setting, last in nonconvex
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Convergence for stochastic algorithms

Stochastic algorithms described by stochastic process (zy)ren
When algorithm is run, we get realization of stochastic process

We analyze stochastic process and will see, e.g.,:

® Expected sequence convergence: E[||zx — 2||2] — 0
® Expected function value convergence: E[f(x) + g(zr) —p*] — 0
® If g =0, expected gradient norm convergence: E[||V f(zy)|[2] — 0

Says what happens with expected value of different quantities

28



What happens with algorithm realizations?

We will conclude that expected value of some quantity, e.g.,:

Elllzx —2*lla] or E[f(zx) +g(xr) —p] or E[|Vf(k)ll2]

converges to 0, where all quantities are nonnegative
What happens with the actual algorithm realizations?
We can make conclusions by the following result: If

® (Zy)ken is a stochastic process with Z, > 0
® the expected value E[Z;] converges to 0 as k — oo

then realizations converge to 0 almost surely (with probability 1)

That expected value of nonnegative quantity goes to 0 is strong
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Convergence rates

We have only talked about convergence, not convergence rate
Rates indicate how fast (in iterations) algorithm reaches solution
Typically divided into:

® Sublinear rates

® Linear rates (also called geometric rates)
® Quadratic rates (or more generally superlinear rates)

Sublinear rates slowest, quadratic rates fastest
Linear rates further divided into Q-linear and R-linear
Quaderatic rates further divided into Q-quadratic and R-quadratic
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Linear rates

A Q-linear rate with factor p € [0,1) can be:

f@ri1) + 9(@rgr) — p* < p(f(xr) + g(zr) — p*)
Ellzkr1 — 2*[|2] < pE[[|lzx, — 2|2

An R-linear rate with factor p € [0,1) and some C > 0 can be:

lz — 2|2 < p*C

this is implied by Q-linear rate and has exponential decrease
Linear rate is superlinear if p = pi and pr — 0 as k — oo
Examples:

(Accelerated) proximal gradient with strongly convex cost
Randomized coordinate descent with strongly convex cost
BFGS has local superlinear with strongly convex cost

but SGD with strongly convex cost gives sublinear rate
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Linear rates — Comparison

® Different rates in log-lin plot

10° T T T T p= 0.99
il I — p=096
p=0.93
102 ¢
— p=10.90
10°F E
104 E
10°F E
10°¢ - - - -
0 200 400 600 800 1000

® (Called linear rate since linear in log-lin plot
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Quadratic rates

® Q-quadratic rate with factor p € [0,1) can be:

f(@es) + g(@rgn) — 0" < p(f (k) + g(zx) — p*)?

ks — a2 < plle — 27|13
® R-quadratic rate with factor p € [0,1) and some C > 0 can be:
le — 2*[|l2 < p*"C

® Quadratic (p?*) vs linear (p*) rate with factor p = 0.9:

uadratic Linear
1 800000000000 1.080000000000
0739000000000 (270000000000
0] 1217828?799800 0.%2980002g000
i, o
0.001310019380 0.531440964000
0.000001544535 0.478296936000
0.000000000002 0.430467270000

® Example: Locally for Newton's method with strongly convex cost
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Quadratic rates — Comparison

® Different rates in log-lin scale

10°

1 2 3 4 5 6 7 8 9 10

® Quadratic convergence is superlinear

— p =099
— p =096

p=0093
— p=0.90
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Sublinear rates

® A rate is sublinear if it is slower than linear

® A sublinear rate can, for instance, be of the form

IN
Q

f(wg) +g(wg) — p*
[@rt1 — zll3

. T
l:rg}$}’kE[||Vf(lz)|lz}

<
~

Sl
N

IN
<
o

(k

Z

I
<
o

(k)

where C > 0 and v decides how fast it decreases, e.g.,

(k) = log k: Stochastic gradient descent v, = ¢/k

(k) = V/k: Stochastic gradient descent: optimal

(k) = k: Proximal gradient, coordinate proximal gradient
d w( ) = k?: Accelerated proximal gradient method

with improved rate further down the list
® We say that the rate is O( ) for the different 1

® To be sublinear ¢ has slower than exponential growth as
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Sublinear rates — Comparison

® Different rates on log-lin scale

10° r r r r 1

log
1
vk

102 1
k
1
k2

10

10°°

10 -8 L L L T

0 2000 4000 6000 8000 10000

® Many iterations may be needed for high accuracy
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Proving convergence rates

® To prove a convergence rate typically requires

® Using inequalities that describe problem class
® Using algorithm definition equalities (or inclusions)
® Combine these to a form so that convergence can be concluded

® Linear and quadratic rates proofs conceptually straightforward

® Sublinear rates implicit via a Lyapunov inequality
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Proving linear or quadratic rates

® |f we suspect linear or quadratic convergence for Vi, > 0:
Vierr < pVy!
where p € [0,1) and p=1 or p =2 and V}, can, e.g., be
Vi =llze —a*ll2 or Vi = f(ar) +g(xp) —p" or Vi =|[IVf(zi)l2

® Can prove by starting with Vi1 (or Vi2,;) and continue using

® function class inequalities
® algorithm equalities

® propeties of norms
[ ]
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Sublinear convergence — Lyapunov inequality

® Assume we want to show sublinear convergence of some Ry > 0

® This typically requires finding a Lyapunov inequality:
Virr < Vi + Wy — Ry,

where
® (Vi)ken, (Wi)ken, and (Ry)ken are nonnegative real numbers

® (Wk)ken is summable, i.e.,, W =372 Wi < 00
® Such a Lyapunov inequality can be found by using

® function class inequalities
® algorithm equalities

® propeties of norms
[ ]



Lyapunov inequality consequences

® From the Lyapunov inequality:
Vierr < Vi + Wy — Ry,

we can conclude that
® V} is nonincreasing if all W, =0
® V, converges as k — oo (will not prove)
® Recursively applying the inequality for [ € {k,...,0} gives
k k k
Vir1 < Vo+ZWl —ZRz <Vo+W — ZRZ
1=0 1=0 1=0

where W is infinite sum of Wy, this implies

k k k
S R<Vo—Vipr+> Wi<Vo+ > Wi <Vo+W

=0 =0 =0

from which we can
® conclude that Ry — 0 as k — oo since Ry > 0
® derive sublinear rates of convergence for R towards 0
40



Concluding sublinear convergence

® | yapunov inequality consequence restated

k k
ZR1§V0+ZW1§V0+W

1=0 =0

® \We can derive sublinear convergence for
® Best Ry: (k+ 1) mineqo,.. xy R < Zf:o R
® Last Ry, (if Ry decreasing): (k+1)R, < 31 Ry
* Average Ry: Ry = 117 S R

e Let Ry be any of these quantities, and we have

& _
Rk < Zl:oRl < o+ W
k+1 k+1

which shows a O(1/k) sublinear convergence
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Deriving other than O(1/k) convergence (1/3)

® Other rates can be derived from a modified Lyapunov inequality:
Vi1 < Vi + Wi — ARy

with A > 0 when we are interested in convergence of Ry, then

k k
DNR S VoY Wi<Vo+ W
1=0 =0

® To have R, — 0 as k — oo we need >, A\ = 00
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Deriving other than O(1/k) convergence (2/3)

® Restating the consequence: Zf:o MR < Vo+W

® \We can derive sublinear convergence for
® Best Ry: minle{ow,k} R; Z;C:O A < 27:0 MRy
® Last Ry (if Ry decreasing): Ry Y ) oM < S o MR
® Weighted average Ry: Ry = fm S MR

e Let Ry be any of these quantities, and we have

Ry Zl oRl VO+W
Zz —0A Zl 0
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Deriving other than O(1/k) convergence (3/3)

® How to get a rate out of:
. Vo+ W
R < S
leo Al

® Assume (k) < Zf:() Ar, then 9 (k) decides rate:

Zz oRl Vo +W
Ry < <
Yioh — W(R)

which gives a O(ﬁ) rate

® If A\ = cis constant: ¥ (k) = c¢(k + 1) and we have O(1/k) rate
® If Ay is decreasing: slower rate than O(1/k)
® If A is increasing: faster rate than O(1/k)
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Estimating ¢ via integrals

® Assume that A\ = ¢(k), then (k) < Z;C:o @(1) and

Z[ oRl < VO+W
Zz od(D) — (k)

® To estimate 1, we use the integral inequalities
® for decreasing nonnegative ¢:

k

k
[ ot + o0 <o < [ otar+ o0

® for increasing nonnegative ¢:

k k
¢ )dt + ¢(0 Z /O o(t)dt + p(k)

t=0

® Remove ¢(k), $(0) > 0 from the lower bounds and use estimate:

k k
= o<y o)
t=0 1=0
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Sublinear rate examples

® For Lyapunov inequality Vi1 < Vi + Wy — ARy, we get:

R < V(;}_(’_kfv where A = ¢(k) and Y(k / o(t)

® | et us quantify the rate ¥ in a few examples:
® Two examples that are slower than O(1/k):
® )\, =¢(k)=c/(k+1) gives slow O(ﬁ) rate:
k
P(k) = / tidt = cflog(t + 1)]¥_y = clog(k + 1)
ot+1
® )\, =¢(k)=c/(k+1)* for « € (0,1), gives faster O(kl%a) rate:
k c 1—a

_ _ D) ko
v = [ ot = el e =

® An example that is faster than O(1/k)
® A\ = ¢(k) = c(k + 1) gives O(k%) rate:

e (k+ 17 =1

k
wuc):/t el D)t = e3¢+ 1) = $(h+ D - )
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Stochastic setting and law of total expectation

In the stochastic setting, we analyze the stochastic process
Tr1 = Ak(k)ms
We will look for inequalities of the form
E[Vit1lzg) < E[Vi|zk] + E[Wi|zk] — E[Ry|xk]

to see what happens in one step given x; (but not given &)
We use law of total expectation E[E[X|Y]] = E[X] to get

E[Vit1] < E[Vi] + E[Wy] — E[Ry]

which is a Lyapunov inequality

We can draw rate conclusions, as we did before, now for E[Ry]
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Stochastic gradient descent

48



Proximal gradient method

® Proximal gradient method solves problems of the form

minimize f(x) + g(x)

where (at least in our analysis)
® f:R" — R is B-smooth (not necessarily convex)
® g:R" - RU{oo} is closed convex
® For large problems, gradient is expensive to compute
= replace by unbiased stochastic approximation of gradient
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Unbiased stochastic gradient approximation

® Stochastic gradient:
® estimator V f(z) outputs R™-valued random variable
® realization V f(z) : R® — R" outputs a realization in R"

® An unbiased stochastic gradient approximator @f satisfies
EVf(z) = Vf(z)
® If x is random variable (as in SGD) an unbiased estimator satisfies

E[Vf(z)la] = V f(x)
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Stochastic gradient descent (SGD)

Consider SGD for solving minimize,, f(z)
The following iteration generates (xx)ren of random variables:

Tht1 = T — ’Ykﬁf(xk)

since @f outputs random R™-valued variables

Stochastic gradient descent finds a realization of this sequence:

Th4+1 = Tk — Vkﬁf(xk)

where (x)gen here is a realization which is different every time
Sloppy in notation for when x is random variable vs realization
Can be efficient if realizations %f much cheaper than V f
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Stochastic gradients — Finite sum problems

e Consider finite sum problems of the form

N
Ininimmize + <Z fz(x)>

=1

f(@)

where (4 is for convenience and)

® all f; : R™ — R are B;-smooth (not necessarily convex)
® f:R"™ — Ris S-smooth (not necessarily convex)

® Training problems of this form, where sum over training data

® Stochastic gradient: select f; at random and take gradient step
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Single function stochastic gradient

Let I be a {1,..., N}-valued random variable
Let, as before, @f denote the stochastic gradient estimator

Realization: let 2 be drawn from probability distribution of I
Vf(z) =V fi(z)

where we will use uniform probability distribution

2|~

pi=pll =1i) =

Stochastic gradient is unbiased:

N N
EIVS @] = 3o piVhile) = & 3 Vhile) = V(@)
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Mini-batch stochastic gradient

® Example: 2-sample mini-batches and N = 4:

Let B be set of K-sample mini-batches to choose from:

B = {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}

® Number of mini batches (Z) each item in (K 1) batches

Let B be B-valued random variable

=+ Vi)

i€B

where we will use uniform probability distribution

pp =pB=B) =
® Stochastic gradient is unbiased:
(XD 5
EY f(x oy 2 & 2 V@) = 5 > Vi) =
BeB i€B K7 =1

Let, as before, @f denote stochastic gradient estimator
Realization: let B be drawn from probability distribution of B

> " Vfi(z) = Vf(2)

=1
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Stochastic gradient descent for finite sum problems

® The algorithm, choose xy € R™ and iterate:
1. Sample a mini-batch By € B of indices uniformly (prob. ﬁ)
2. Run
Ty = ok — 2 > Vij(an)
JEBy
® Of course, can have B = {1,..., N} and sample only one function

® Gives realization of underlying stochastic process

How about convergence?
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SGD - Example

eletc; +ca+c3=0
e Solve minimize, (L ([|lz — c1/|3 + |2 — 2|3 + ||z — c313) = 2|2]13 + ¢

e Stochastic gradient method with v, =1/3

Levelsets of summands Levelset of sum
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SGD - Example

eletc; +ca+c3=0
e Solve minimize, (L ([|lz — c1/|3 + |2 — 2|3 + ||z — c313) = 2|2]13 + ¢

e Stochastic gradient method with v, = 1/k

Levelsets of summands Levelset of sum
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SGD - Example

eletc; +ca+c3=0
e Solve minimize, (L ([|lz — c1/|3 + |2 — 2|3 + ||z — c313) = 2|2]13 + ¢
e Gradient method with v, = 1/3

©

Levelsets of summands Levelset of sum

e SGD will not converge for constant steps (unlike gradient method)
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Fixed step-size SGD does not converge to solution

® We can at most hope for finding point Z such that
0=Vf(z)

i.e., the proximal gradient fixed-point characterization
® Assume xy such that 0 = V f(xy)
® That 0 = Vf(z) does not imply 0 = V f;(z) for all f;, hence
Tpy1 = ok — WV fi(Tr) # Tk

i.e., will move away from prox-grad fixed-point for fixed ~; > 0
® Need diminishing step-size rule to hope for convergence
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Polyak-Ruppert averaging

® Polyak-Ruppert averaging:
® Qutput average of iterations instead of last iteration

® Example: SGD with constant steps and its average sequence

SGD with constant step-size Average of SGD sequence

58



Nonconvex setting — Assumptions
® \We consider problems of the form
minimize f(z)

® Assumptions:

(#) f:R"™ = Ris B-smooth, for all z,y € R™:

f@) < f@) + Vi) (y—2)+ 2y — 3

(7¢) Stochastic gradient of f is unbiased: E[@f(ac)bc] =Vf(x)
(#47) Variance is bounded: E[H@f(:c)ﬂgm < |IVF()|3 + M?
(v) No nonsmooth term, i.e., g =0

v) A minimizer exists and p* = min, f(z) is optimal value

(vi) Step-sizes satisfy > oo K = 00 and > po Yk < 0©

® Comments:
® (iii): variance is bounded by M? since

E[|[Vf(@)l3l] = Var[|V f(z) 2]2] + |E[V f (z)|2]3
= Var[[|Vf (2)||zl2] + |V £ ()13
® (iii): analysis is slightly simpler if assuming E[||V f(z)|3|z] < G



Nonconvex setting — Analysis

® Upper bound on f in Assumption (i) gives
E[f (zh41)]ax]
< E[f(zr) + V(1) (@1 — or) + §llznsr — zill3lza]
= f(zx) = wVf(zr)'E [ﬁf(ka)l + R[S £ (o) |3lex]
< flak) =V f o)V f ) + ZE(V f ()5 + M?)
= Flar) = w1 - i)ﬂwmk)uw%w

K]+

® lety < % (true for large enough k since v, summable):

E[f (zer) s < Flax) — BV @)l + 2202

® Subtracting p* from both sides gives

Elf (zhs1) 2] — p* < f(m) — p* — BV ()l + 22 M2
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Total expectation

® Taking total expectation gives Lyapunov inequality

E[f (z141)] — p* < E[f(wx)] — p* — BE[|V () [|Z]) + 22 M2
N——

Vi +1 Vi Ry, Wy

e Consequences:

® Vi, =E[f(zr)] — p* converges (not necessarily to 0)
A 27:0 R < Vo + Zf:o Wk, which, when multiplied by 2 gives

D> wENV )3 < 2(f(w0) —p*) + Y A BM?
=0

= =1
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Minimum gradient bound tradeoff

® The Lyapunov inequality tells us that

k k
D AE(IVF@)l[5] < 2(f(w0) —p*) + Y A7 BM?

=0 =1

® Using that

k k
lr(r)nn E[|V f(z:)|3] ; Z(; WE[|V £ (21)]3)

we conclude that the minimum gradient norm satisfies

* k
min E[||Vf(xl)|| ] < 2(f(zo) —p )k‘f‘ >0V BM?
1=0,..., SF o

where terms in the numerator:
® 2(f(zo) — p*) is due to initial suboptimality
° Zf:o ~2BM? is due to noise in gradient estimates

(if M =0, use vy, = % to recover (proximal) gradient bound)
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Minimum gradient convergence

® \What conclusions can we draw from

2(f(x0) — p*) + Y1 12 BM?
Ef:o Vi

® Let C'=)2,77 < oo (finite since (77)kxen summable) then

. 2
lzrg{}y}’kE[IIVf(sz)llz] <

2f(0) — ") + CBM?
Z?:o "

as k — oo since (k) ken is not summable

. ; 21 <
l:rglv}p’kE[HVf(rz)llz] <

® Consequences:
® Smallest expected value of gradient norm square converges to 0
® We don't know what happens with latest expected value
® Gradient converges to 0 for algorithm realizations almost surely
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Convexity and strong convexity

® |f we in addition assume convexity, we can show

k
o — 213 + Sy 020

R, < =
2 Zz;o Vi

where

Re= min B[f@e0) = f")]  or Ry =Elf(@)— f(z")
and Ty is an average of previous iterates
® Smallest or average function value converges to f(z*)
® in expectation
® for algorithm realizations with probility 1
® no last iterate convergence bound
® Assumption: f smooth and strongly convex

® Proximal gradient method achieves linear convergence
® Stochastic gradient descent does not achieve linear convergence
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Convergence results

e Convergence in nonconvex and convex settings are:

k 2
Ry < —VO +D;€Zl:0%
b =0
for different Vi, D, and b and Ry,

® Same dependance on step-size

® What step-sizes can we use and have convergence?
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Step-size requirements

® We shift indices k& and [ by one to start algorithm with £ =1
e Step-sizes: » =, 77 < o0 and Y_,°, v = oo make upper bound

k
< Vi+DY N

Ry <
b Zf:l f}/l

0
as k — oo

® Step-size choices that satisfy assumptions:

® v = c/k for some ¢ >0
® v, =c/k for a € (0.5,1)

]./kO‘G
1k
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Estimating rates via integrals

For convergence need to verify > ;° v = o0 and Y =, 77 <
To estimate rates we need to estimate 3", 4 and Y5, 72
Assume ~y; = ¢(1) with decreasing and nonnegative ¢ : R, — R

Then we can estimate using integrals

k

k k
o(t)dt + p(k Z o0+ (1)

t=1

We can also remove ¢(k) from lower bound to simplify
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Estimating rates — Example v, = ¢/k

® Let v = ¢(k) with ¢(k) = ¢/k and estimate the sum

k k
C
Sz [ Gt = cllogltli, = clog(h)
=1 =1

(which diverges as k — oo as required) and the finite sum

k k2
Soob s [ Gate o) = Flii, 4 =2 -1y < 2
=1 t=1

® \We use these to arrive at the following rate when v, = ¢/k:

Vi+DYF 2 < Vi+2Dc*  Vi/c+2Dc

Ry < < =
bzle v belog k blogk

so we have O(1/logk) convergence, which is slow
® The constant c trades off the two constant terms V; and D
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Estimating rates — Example v, = ¢/k”

® Let v = ¢(k) with ¢(k) = ¢/k* and o € (0.5,1) and estimate

k k

& l-a. _
> 2[ gdt = =gl = kT -
=1 =

(which diverges as k — oo since slower than 1/k) and the sum

k E 2
C 1—2a 2
Z’}/? S / . t270/dt + ¢(1)2 = C2[t17ﬁ}i€:1 + C2 S 2(;771 + C2 = C2C
=1 t=

where the last inequality holds since o > 0.5
® We use these to arrive at the following rate when ~y, = ¢/k*:

R < L DEL0F (L= a)(Vi/e+ DC)
) D R b(k'=> —1)
so we have O(1/k'=?) rate with a € (0.5, 1)

® Rate improves with smaller « and 1/k'~* — vk as a — 0.5
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Refining the step-size analysis

® Have not assumed Zloil fyf finite for general convergence bound

k
Vi+D) 712
k
b m

® \We can divide the sum into two parts

Ry,

IA

V; D
Ry < !

B bezl')’l b%’ L
l 1

Ez 1’Yl
Zz 17

(don't need 3y, 77 < oo for Ry — O)

'SoRkHOifozlfyl%ooand — 00
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Refined step-size analysis interpretation

_ vk _ X .
® Let o1 (k) =>_,_; v and 92 (k) and restate bound:

= <k
PO

\%1 D
by (k) " bia (k)
® ¢ decides how fast V; (f(z) — p* or ||z — x*||2) is supressed
® 1)y decides how fast D is supressed, where D can be

® G? if assumption E[Hif(w)”%\w] <G?

® M? if assumption E[||V f(z)|3|z] < ||V f(2)|3 + M?
® There is a tradeoff between supressing these quantities

Ry, <

® For previous step-size choices, 11 is slower

Will present step-sizes where 15 is slower
® Actual convergence very much dependent on constants V7 and D

71



Estimating rates — Example v, = ¢/Vk

® \We know from before that

k k
S =Y e/k0% > 2e(VE — 1) ~ 2eVk
=1

=1

and that the sum of step-sizes does not converge, but satisfies

k k
Z'y? < ZCQ/IC = c?log(k)
=1 1=1

. k k
e Since >, vi/ >, 1}F converges, also Ry converges as

Vi Dc

R <71+7
"= vk bl

with rate O(log k/Vk)
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Estimating rates — Example ~;, = ¢/k*

® Let now o € (0,0.5) for which 7y is not square summable
® We know form before that

Z%

and the squared sum does not converge, but satisfies

-1

k

2 2
ZW?SC2[1 } 1+C (kl 2&_1)_’_02: 1£2a(k1 2 —20[)
=1

® We use these to arrive at the following rate when ~y, = ¢/k*:
Ry < (I-a)W (1- “)lﬂi
20c(kl=> —1) * b(1 — 20) Epa=d

Fl2a_o4

with rate (ignoring constant terms) is worst of
O(1/k'™) and  OQ/kE'™2/E'72%) = O(1/k®)

which is the latter since « € (0,0.5)
® Rate improves with larger o and k% — vk as a — 0.5 73



How about fixed step-size

Algorithms run in practice a finite number of iterations K
What happens with fixed-step size scheme after K steps?
We fix v, =5 = /v K with € > 0 to be the same for all k

Our convergence result says:

_Vi+DYE 9 Vit DEy? Vit D6

R -
BETOYE bK7 N,

Comments:

get /K convergence rate until iteration K

but Ry will not converge to 0 as k — oo

that v, = 8/+/K holds for every fixed step-size for some 0
actual convergence very much dependent on Vi, D, and 6
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Rate comparison

Stochastic gradient v, = 1/k“

Setting Gradient
a=1 a€(0,5,1) a=05 «a€(0,0.5)
Nonconvex O(%) O(ﬁgk) O(kl%a) O(lc\)ﬁ’;) O(k%)
Convex O(3)  O(mtp)  OGrss) 0(13%;) O(%)
linear sublinear sublinear sublinear sublinear

Strongly convex

® Stochastic gradient descent slower in all settings
® However, every iteration in stochastic gradient descent cheaper
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Finite sum comparison

® \\e consider

N
minimize Z fi(z)
i=1
where N is large and use one f; for each stochastic gradient
® N iterations of stochastic gradient is at cost of 1 full gradient

® Progress after k epochs (stochastic) vs k iterations (full):

Setting Gradient Stochastic gradient v, = 1/k“
a=1 a € (0,5,1) a=0.5 a € (0,0.5)
Nonconvex o(31) O(loglNk) O( (Nkilfﬂ) O(i‘fﬁ’%’;) O(W)
Covex  O(})  Olvr) Olgpr=s) O(%XE)  O(phys)
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Finite sum comparison — Quantification

Assume that finite sum of IV equals 10 million summands

Computational budget is that we run k = 10 iterations/epochs

Replacing ordo expressions with numbers:

Setting Gradient Stochastic gradient v, = 1/k“
a=1 a=075 a=05 a=0.25
Nonconvex 0.1 0.054 0.01 0.0018 0.01
Convex 0.1 0.054 0.01 0.0018 0.01

Stochastic gives better ordo-rates (but constants are worse)

Significant difference within stochastic methods, v, = ﬁ best

Actual performance depends a lot on relation between constants
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Thanks for your attention

® Most slides from Optimization for Learning at Lund University

https://canvas.education.lu.se/courses/7714

® Short “flipped classroom” style videos available for many topics

http://www.control.lth.se/fileadmin/control/
Education/EngineeringProgram/FRTN50/VideoPlatform/
VideoLecturePlatform.html
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