Stochastic Gradient Descent

Pontus Giselsson

Finite sum problems

Finite sum problems

• Yesterday, you saw problems of the form

minimize f(x) + g(x)

where

- *f* is smooth (and potentially convex)
- g is nonsmooth and convex
- Algorithm: proximal gradient method
- Sometimes there is additional structure, we will treat

$$\operatorname{minimize} \underbrace{\sum_{i=1}^{N} f_i(x)}_{f(x)}$$

where f is of finite sum form (and $g\equiv 0)$

- Can be solved by gradient method
- If N is large, stochastic gradient descent is often preferrable

Why finite sum?

Finite sum problems appear naturally, e.g., in supervised learning

What is supervised learning?

- Let (x,y) represent object and label pairs
 - Object $x \in \mathcal{X} \subseteq \mathbb{R}^n$
 - Label $y \in \mathcal{Y} \subseteq \mathbb{R}^{K}$
- Available: Labeled training data (training set) $\{(x_i, y_i)\}_{i=1}^N$
 - Data $x_i \in \mathbb{R}^n$, or *examples* (often n large)
 - Labels $y_i \in \mathbb{R}^K$, or response variables (often K = 1)

Objective: Find a model (function) m(x):

- that takes data (example, object) x as input
- ullet and predicts corresponding label (response variable) y

How?:

• learn m from training data, but should generalize to all (x, y)

Relation to optimization

Training the "machine" $\,m$ consists in solving optimization problem

Regression vs Classification

There are two main types of supervised learning tasks:

- Regression:
 - Predicts quantities
 - Real-valued labels $y \in \mathcal{Y} = \mathbb{R}^{K}$ (will mainly consider K = 1)
- Classification:
 - Predicts class belonging
 - Finite number of class labels, e.g., $y \in \mathcal{Y} = \{1, 2, \dots, k\}$

Regression training problem

• Objective: Find data model m such that for all (x, y):

 $m(x) - y \approx 0$

• Let model output u = m(x); Examples of data misfit losses

• Training: find model m that minimizes sum of training set losses

$$\underset{m}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i), y_i)$$

Supervised learning – Least squares

• Parameterize model m and set a linear (affine) structure

$$m(x;\theta) = w^T x + b$$

where $\theta = (w, b)$ are *parameters* (also called *weights*)

• Training: find model parameters that minimize training cost

minimize
$$\sum_{i=1}^{N} L(m(x_i; \theta), y_i) = \frac{1}{2} \sum_{i=1}^{N} (w^T x_i + b - y_i)^2$$

(note: optimization over model parameters θ)

- Problem is convex in θ since $L(\cdot,y)$ convex and model affine
- Once trained, predict response of new input x as $\hat{y} = w^T x + b$

Example – Least squares

• Find affine function parameters that fit data:

Example – Least squares

• Find affine function parameters that fit data:

• Data points (x, y) marked with (*), LS model wx + b (-----)

Example – Least squares

• Find affine function parameters that fit data:

- Data points (x, y) marked with (*), LS model wx + b (----)
- Least squares finds affine function that minimizes squared distance 10

Binary classification

- Labels y = 0 or y = 1 (alternatively y = -1 or y = 1)
- Training problem

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i; \theta), y_i)$$

- Design loss L to train model parameters θ such that:
 - $m(x_i; \theta) < 0$ for pairs (x_i, y_i) where $y_i = 0$
 - $m(x_i; \theta) > 0$ for pairs (x_i, y_i) where $y_i = 1$
- Predict class belonging for new data points x with trained θ^* :
 - $m(x; \theta^*) < 0$ predict class y = 0
 - $m(x; \theta^*) > 0$ predict class y = 1

objective is that this prediction is accurate on unseen data

Logistic regression

- Logistic regression uses:
 - affine parameterized model $m(x; \theta) = w^T x + b$ (where $\theta = (w, b)$)
 - loss function $L(u, y) = \log(1 + e^u) yu$ (if labels y = 0, y = 1)
- Training problem, find model parameters by solving:

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i; \theta), y_i) = \sum_{i=1}^{N} \left(\log(1 + e^{x_i^T w + b}) - y_i(x_i^T w + b) \right)$$

- Training problem convex in $\boldsymbol{\theta} = (w,b)$ since:
 - model $m(x; \theta)$ is affine in θ
 - loss function L(u, y) is convex in u

Prediction

- $\bullet \,$ Use trained model m to predict label y for unseen data point x
- Since affine model $m(x; \theta) = w^T x + b$, prediction for x becomes:
 - If $w^T x + b < 0$, predict corresponding label y = 0
 - If $w^T x + b > 0$, predict corresponding label y = 1
 - If $w^T x + b = 0$, predict either y = 0 or y = 1
- A hyperplane (decision boundary) separates class predictions:

$$m(x; heta) > 0$$
 $m(x; heta) < 0$

$$H := \{x : w^T x + b = 0\}$$

Multiclass logistic regression

- K classes in $\{1,\ldots,K\}$ and data/labels $(x,y)\in\mathcal{X}\times\mathcal{Y}$
- Labels: $y \in \mathcal{Y} = \{e_1, \dots, e_K\}$ where $\{e_j\}$ coordinate basis
 - Example, K = 5 class 2: $y = e_2 = [0, 1, 0, 0, 0]^T$
- Use one model per class $m_j(x; \theta_j)$ for $j \in \{1, \dots, K\}$
- Objective: Find $\theta = (\theta_1, \dots, \theta_K)$ such that for all models j:
 - $m_j(x;\theta_j) \gg 0$, if label $y = e_j$ and $m_j(x;\theta_j) \ll 0$ if $y \neq e_j$
- Training problem loss function:

$$L(u, y) = \log\left(\sum_{j=1}^{K} e^{u_j}\right) - u^T y$$

where label y is a "one-hot" basis vector, is convex in u

Multiclass logistic regression – Training problem

• Affine data model $m(x; \theta) = w^T x + b$ with

$$w = [w_1, \dots, w_K] \in \mathbb{R}^{n \times K}, \qquad b = [b_1, \dots, b_K]^T \in \mathbb{R}^K$$

• One data model per class

$$m(x;\theta) = \begin{bmatrix} m_1(x;\theta_1) \\ \vdots \\ m_K(x;\theta_K) \end{bmatrix} = \begin{bmatrix} w_1^T x + b_1 \\ \vdots \\ w_K^T x + b_K \end{bmatrix}$$

• Training problem:

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} \log \left(\sum_{j=1}^{K} e^{w_j^T x_i + b_j} \right) - y^T (w^T x_i + b)$$

where y is "one-hot" encoding of label

• Problem is convex since affine model is used

Example – Linearly separable data

• Problem with 7 classes

Example – Linearly separable data

• Problem with 7 classes and affine multiclass model

Example – Quadratically separable data

• Same data, new labels in 6 classes

Example – Quadratically separable data

• Same data, new labels in 6 classes, affine model

Example – Quadratically separable data

• Same data, new labels in 6 classes, quadratic model

Features

- Used quadratic features in last example
- Same procedure as before:
 - replace data vector x_i with feature vector $\phi(x_i)$
 - run classification method with feature vectors as inputs
- Model still affine in parameters, training problem still convex

Deep learning

- Can be used both for classification and regression
- Deep learning training problem is of the form

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i; \theta), y_i)$$

where typically

- $L(u,y) = \frac{1}{2} \|u-y\|_2^2$ is used for regression
- $L(u, y) = \log \left(\sum_{j=1}^{K} e^{u_j} \right) y^T u$ is used for K-class classification
- Difference to previous convex methods: Nonlinear model $m(x; \theta)$
 - Deep learning regression generalizes least squares
 - DL classification generalizes multiclass logistic regression
 - Nonlinear model makes training problem nonconvex

Deep learning – Model

• Nonlinear model of the following form is often used:

 $m(x;\theta) := W_n \sigma_{n-1} (W_{n-1} \sigma_{n-2} (\cdots (W_2 \sigma_1 (W_1 x + b_1) + b_2) \cdots) + b_{n-1}) + b_n,$

- The σ_j are nonlinear and called activation functions
- Composition of nonlinear (σ_j) and affine $(W_j(\cdot) + b_j)$ operations
- Each σ_j function constitutes a hidden layer in the model network
- Graphical representation with three hidden layers

- Why this structure?
 - (Assumed) universal function approximators
 - Efficient gradient computation using backpropagation (chain rule)

Name $\sigma(u)$ Graph Sigmoid $\frac{1}{1+e^{-u}}$ ReLU $\max(u, 0)$ LeakyReLU $\max(u, \alpha u)$ $\begin{cases} u & \text{if } u \ge 0\\ \alpha(e^u - 1) & \text{else} \end{cases}$ ELU $\lambda \begin{cases} u & \text{if } u \geq 0 \\ \alpha(e^u - 1) & \text{else} \end{cases}$ SELU

Examples of activation functions

Learning features

- Used prespecified feature maps (or Kernels) in convex methods
- Deep learning instead learns feature map during training
 - Define parameter (weight) dependent feature vector:

$$\phi(x;\theta) := \sigma_{n-1}(W_{n-1}\sigma_{n-2}(\cdots(W_2\sigma_1(W_1x+b_1)+b_2)\cdots)+b_{n-1})$$

- Model becomes $m(x; \theta) = W_n \phi(x; \theta) + b_n$
- Inserted into training problem:

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(W_n \phi(x_i; \theta) + b_n, y_i)$$

same as before, but with learned (parameter-dependent) features

• Learning features at training makes training nonconvex

Learning features – Graphical representation

• Fixed features gives convex training problems

• Learning features gives nonconvex training problems

Output of last activation function is feature vector

Deep learning training problem

• Training problem:

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{N} L(m(x_i; \theta), y_i)$$

where typically

- $L(u,y) = \frac{1}{2} \|u-y\|_2^2$ is used for regression
- $L(u, y) = \log \left(\sum_{j=1}^{K} e^{u_j} \right) y^T u$ is used for K-class classification
- Model $m(x; \theta)$ is nonlinear
 - Training problem becomes nonconvex
 - If activation functions are smooth, training problem is smooth

Proving convergence

Deterministic and stochastic algorithms

• We have deterministic algorithms

$$x_{k+1} = \mathcal{A}_k x_k$$

that given initial x_0 will give the same sequence $(x_k)_{k\in\mathbb{N}}$

· We will also see stochastic algorithms that iterate

$$x_{k+1} = \mathcal{A}_k(\xi_k) x_k$$

where ξ_k is a random variable that also decides the mapping

- $(x_k)_{k\in\mathbb{N}}$ is a stochastic process of random variables
- when running the algorithm, we evaluate ξ_k and get a realization
- different realization $(x_k)_{k\in\mathbb{N}}$ every time even if started at same x_0
- Stochastic algorithms useful although problem is deterministic

Types of convergence

- Let x^\star be solution to composite problem and $p^\star = f(x^\star) + g(x^\star)$
- We will see convergence of different quantities in different settings
- For deterministic algorithms that generate $(x_k)_{k\in\mathbb{N}}$, we will see
 - Sequence convergence: $x_k \to x^*$
 - Function value convergence: $f(x_k) + g(x_k) \rightarrow p^*$
 - If g = 0, gradient norm convergence: $\|\nabla f(x_k)\|_2 \to 0$
- Convergence is stronger as we go up the list
- First two common in convex setting, last in nonconvex

Convergence for stochastic algorithms

- Stochastic algorithms described by stochastic process $(x_k)_{k\in\mathbb{N}}$
- When algorithm is run, we get realization of stochastic process
- We analyze stochastic process and will see, e.g.,:
 - Expected sequence convergence: $\mathbb{E}[||x_k x^{\star}||_2] \to 0$
 - Expected function value convergence: $\mathbb{E}[f(x_k) + g(x_k) p^*] \to 0$
 - If g = 0, expected gradient norm convergence: $\mathbb{E}[\|\nabla f(x_k)\|_2] \to 0$
- · Says what happens with expected value of different quantities

What happens with algorithm realizations?

• We will conclude that expected value of some quantity, e.g.,:

 $\mathbb{E}[\|x_k - x^\star\|_2] \quad \text{or} \quad \mathbb{E}[f(x_k) + g(x_k) - p^\star] \quad \text{or} \quad \mathbb{E}[\|\nabla f(x_k)\|_2]$

converges to 0, where all quantities are nonnegative

- What happens with the actual algorithm realizations?
- We can make conclusions by the following result: If
 - $(Z_k)_{k\in\mathbb{N}}$ is a stochastic process with $Z_k\geq 0$
 - the expected value $\mathbb{E}[Z_k]$ converges to 0 as $k \to \infty$ then realizations converge to 0 almost surely (with probability 1)
- That expected value of nonnegative quantity goes to 0 is strong

Convergence rates

- We have only talked about convergence, not convergence *rate*
- Rates indicate how fast (in iterations) algorithm reaches solution
- Typically divided into:
 - Sublinear rates
 - Linear rates (also called geometric rates)
 - Quadratic rates (or more generally superlinear rates)
- Sublinear rates slowest, quadratic rates fastest
- Linear rates further divided into Q-linear and R-linear
- Quadratic rates further divided into Q-quadratic and R-quadratic

Linear rates

• A Q-linear rate with factor $\rho \in [0,1)$ can be:

$$f(x_{k+1}) + g(x_{k+1}) - p^* \le \rho(f(x_k) + g(x_k) - p^*)$$
$$\mathbb{E}[\|x_{k+1} - x^*\|_2] \le \rho \mathbb{E}[\|x_k - x^*\|_2]$$

• An R-linear rate with factor $\rho \in [0,1)$ and some C > 0 can be:

$$\|x_k - x^\star\|_2 \le \rho^k C$$

this is implied by Q-linear rate and has exponential decrease

- Linear rate is superlinear if $\rho = \rho_k$ and $\rho_k \to 0$ as $k \to \infty$
- Examples:
 - (Accelerated) proximal gradient with strongly convex cost
 - Randomized coordinate descent with strongly convex cost
 - BFGS has local superlinear with strongly convex cost
 - but SGD with strongly convex cost gives sublinear rate
Linear rates – Comparison

• Called linear rate since linear in log-lin plot

Quadratic rates

• Q-quadratic rate with factor $\rho \in [0,1)$ can be:

$$f(x_{k+1}) + g(x_{k+1}) - p^* \le \rho (f(x_k) + g(x_k) - p^*)^2$$
$$\|x_{k+1} - x^*\|_2 \le \rho \|x - x^*\|_2^2$$

• R-quadratic rate with factor $\rho \in [0,1)$ and some C>0 can be:

$$\|x_k - x^\star\|_2 \le \rho^{2k} C$$

• Quadratic (ρ^{2k}) vs linear (ρ^k) rate with factor $\rho = 0.9$:

• Example: Locally for Newton's method with strongly convex cost

Quadratic rates – Comparison

• Different rates in log-lin scale

• Quadratic convergence is superlinear

Sublinear rates

- A rate is sublinear if it is slower than linear
- A sublinear rate can, for instance, be of the form

$$f(x_k) + g(x_k) - p^* \leq \frac{C}{\psi(k)}$$
$$\|x_{k+1} - x_k\|_2^2 \leq \frac{C}{\psi(k)}$$
$$\min_{l=0,\dots,k} \mathbb{E}[\|\nabla f(x_l)\|_2^2] \leq \frac{C}{\psi(k)}$$

where C > 0 and ψ decides how fast it decreases, e.g.,

- $\psi(k) = \log k$: Stochastic gradient descent $\gamma_k = c/k$
- $\psi(k) = \sqrt{k}$: Stochastic gradient descent: optimal γ_k
- $\psi(k) = k$: Proximal gradient, coordinate proximal gradient
- $\psi(k) = k^2$: Accelerated proximal gradient method

with improved rate further down the list

- We say that the rate is $O(\frac{1}{\psi(k)})$ for the different ψ
- To be sublinear ψ has slower than exponential growth as

Sublinear rates – Comparison

• Many iterations may be needed for high accuracy

Proving convergence rates

- To prove a convergence rate typically requires
 - Using inequalities that describe problem class
 - Using algorithm definition equalities (or inclusions)
 - Combine these to a form so that convergence can be concluded
- Linear and quadratic rates proofs conceptually straightforward
- Sublinear rates implicit via a *Lyapunov inequality*

Proving linear or quadratic rates

• If we suspect linear or quadratic convergence for $V_k \ge 0$:

$$V_{k+1} \le \rho V_k^p$$

where $\rho \in [0,1)$ and p=1 or p=2 and V_k can, e.g., be

$$V_k = \|x_k - x^{\star}\|_2$$
 or $V_k = f(x_k) + g(x_k) - p^{\star}$ or $V_k = \|\nabla f(x_k)\|_2$

- Can prove by starting with V_{k+1} (or V_{k+1}^2) and continue using
 - function class inequalities
 - algorithm equalities
 - propeties of norms
 - . . .

Sublinear convergence – Lyapunov inequality

- Assume we want to show sublinear convergence of some $R_k \ge 0$
- This typically requires finding a *Lyapunov inequality*:

$$V_{k+1} \le V_k + W_k - R_k$$

where

- $(V_k)_{k\in\mathbb{N}}$, $(W_k)_{k\in\mathbb{N}}$, and $(R_k)_{k\in\mathbb{N}}$ are nonnegative real numbers
- $(W_k)_{k\in\mathbb{N}}$ is summable, i.e., $\overline{W} := \sum_{k=1}^{\infty} W_k < \infty$
- Such a Lyapunov inequality can be found by using
 - function class inequalities
 - algorithm equalities
 - propeties of norms
 - . . .

Lyapunov inequality consequences

• From the Lyapunov inequality:

$$V_{k+1} \le V_k + W_k - R_k$$

we can conclude that

- V_k is nonincreasing if all $W_k = 0$
- V_k converges as $k \to \infty$ (will not prove)
- Recursively applying the inequality for $l \in \{k, \ldots, 0\}$ gives

$$V_{k+1} \le V_0 + \sum_{l=0}^k W_l - \sum_{l=0}^k R_l \le V_0 + \overline{W} - \sum_{l=0}^k R_l$$

where \overline{W} is infinite sum of W_k , this implies

$$\sum_{l=0}^{k} R_{l} \le V_{0} - V_{k+1} + \sum_{l=0}^{k} W_{l} \le V_{0} + \sum_{l=0}^{k} W_{l} \le V_{0} + \overline{W}$$

from which we can

- conclude that $R_k \to 0$ as $k \to \infty$ since $R_k \ge 0$
- derive sublinear rates of convergence for R_k towards 0

Concluding sublinear convergence

• Lyapunov inequality consequence restated

$$\sum_{l=0}^{k} R_l \le V_0 + \sum_{l=0}^{k} W_l \le V_0 + \overline{W}$$

- We can derive sublinear convergence for
 - Best $R_k: (k+1) \min_{l \in \{0,...,k\}} R_l \le \sum_{l=0}^k R_l$
 - Last R_k (if R_k decreasing): $(k+1)R_k \leq \sum_{l=0}^k R_l$
 - Average R_k : $\bar{R}_k = \frac{1}{k+1} \sum_{l=0}^k R_l$
- Let \hat{R}_k be any of these quantities, and we have

$$\hat{R}_k \le \frac{\sum_{l=0}^k R_l}{k+1} \le \frac{V_0 + \overline{W}}{k+1}$$

which shows a O(1/k) sublinear convergence

Deriving other than O(1/k) convergence (1/3)

• Other rates can be derived from a modified Lyapunov inequality:

$$V_{k+1} \le V_k + W_k - \lambda_k R_k$$

with $\lambda_k > 0$ when we are interested in convergence of R_k , then

$$\sum_{l=0}^{k} \lambda_l R_l \le V_0 + \sum_{l=0}^{k} W_l \le V_0 + \overline{W}$$

• To have $R_k \to 0$ as $k \to \infty$ we need $\sum_{l=0}^\infty \lambda_l = \infty$

Deriving other than O(1/k) convergence (2/3)

- Restating the consequence: $\sum_{l=0}^{k} \lambda_l R_l \leq V_0 + \overline{W}$
- We can derive sublinear convergence for
 - Best R_k : $\min_{l \in \{0,...,k\}} R_l \sum_{l=0}^k \lambda_l \leq \sum_{l=0}^k \lambda_l R_l$
 - Last R_k (if R_k decreasing): $R_k \sum_{l=0}^k \lambda_l \leq \sum_{l=0}^k \lambda_l R_l$
 - Weighted average R_k : $\bar{R}_k = \frac{1}{\sum_{l=0}^k \lambda_l} \sum_{l=0}^k \lambda_l R_l$
- Let \hat{R}_k be any of these quantities, and we have

$$\hat{R}_k \le \frac{\sum_{l=0}^k R_l}{\sum_{l=0}^k \lambda_l} \le \frac{V_0 + \overline{W}}{\sum_{l=0}^k \lambda_l}$$

Deriving other than O(1/k) convergence (3/3)

• How to get a rate out of:

$$\hat{R}_k \le \frac{V_0 + \overline{W}}{\sum_{l=0}^k \lambda_l}$$

• Assume $\psi(k) \leq \sum_{l=0}^{k} \lambda_l$, then $\psi(k)$ decides rate:

$$\hat{R}_k \le \frac{\sum_{l=0}^k R_l}{\sum_{l=0}^k \lambda_l} \le \frac{V_0 + \overline{W}}{\psi(k)}$$

which gives a $O(\frac{1}{\psi(k)})$ rate

- If $\lambda_k = c$ is constant: $\psi(k) = c(k+1)$ and we have O(1/k) rate
- If λ_k is decreasing: slower rate than O(1/k)
- If λ_k is increasing: faster rate than O(1/k)

Estimating ψ via integrals

• Assume that $\lambda_k = \phi(k)$, then $\psi(k) \leq \sum_{l=0}^k \phi(l)$ and

$$\hat{R}_k \le \frac{\sum_{l=0}^k R_l}{\sum_{l=0}^k \phi(l)} \le \frac{V_0 + \overline{W}}{\psi(k)}$$

- To estimate ψ , we use the integral inequalities
 - for decreasing nonnegative ϕ :

$$\int_{t=0}^{k} \phi(t)dt + \phi(k) \le \sum_{l=0}^{k} \phi(l) \le \int_{t=0}^{k} \phi(t)dt + \phi(0)$$

• for increasing nonnegative ϕ :

$$\int_{t=0}^{k} \phi(t) dt + \phi(0) \le \sum_{l=0}^{k} \phi(l) \le \int_{t=0}^{k} \phi(t) dt + \phi(k)$$

• Remove $\phi(k), \phi(0) \ge 0$ from the lower bounds and use estimate:

$$\psi(k) = \int_{t=0}^{k} \phi(t) dt \le \sum_{l=0}^{k} \phi(l)$$

Sublinear rate examples

• For Lyapunov inequality $V_{k+1} \leq V_k + W_k - \lambda_k R_k$, we get:

$$\hat{R}_k \leq \frac{V_0 + \overline{W}}{\psi(k)} \qquad \text{where} \qquad \lambda_k = \phi(k) \text{ and } \psi(k) = \int_{t=0}^k \phi(t) dt$$

- Let us quantify the rate ψ in a few examples:
 - Two examples that are slower than O(1/k):
 - $\lambda_k = \phi(k) = c/(k+1)$ gives slow $O(\frac{1}{\log k})$ rate:

$$\psi(k) = \int_{t=0}^{k} \frac{c}{t+1} dt = c[\log(t+1)]_{t=0}^{k} = c\log(k+1)$$

•
$$\lambda_k = \phi(k) = c/(k+1)^{\alpha}$$
 for $\alpha \in (0,1)$, gives faster $O(\frac{1}{k^{1-\alpha}})$ rate:

$$\psi(k) = \int_{t=0}^{k} \frac{c}{(t+1)^{\alpha}} dt = c \left[\frac{(t+1)^{1-\alpha}}{(1-\alpha)}\right]_{t=0}^{k} = \frac{c}{1-\alpha} \left((k+1)^{1-\alpha} - 1\right)$$

• An example that is faster than O(1/k)

•
$$\lambda_k = \phi(k) = c(k+1)$$
 gives $O(\frac{1}{k^2})$ rate:

$$\psi(k) = \int_{t=0}^{k} c(t+1)dt = c[\frac{1}{2}(t+1)^2]_{t=0}^{k} = \frac{c}{2}((k+1)^2 - 1)$$

Stochastic setting and law of total expectation

• In the stochastic setting, we analyze the stochastic process

$$x_{k+1} = \mathcal{A}_k(\xi_k) x_k$$

• We will look for inequalities of the form

$$\mathbb{E}[V_{k+1}|x_k] \le \mathbb{E}[V_k|x_k] + \mathbb{E}[W_k|x_k] - \mathbb{E}[R_k|x_k]$$

to see what happens in one step given x_k (but not given ξ_k)

• We use *law of total expectation* $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$ to get

$$\mathbb{E}[V_{k+1}] \le \mathbb{E}[V_k] + \mathbb{E}[W_k] - \mathbb{E}[R_k]$$

which is a Lyapunov inequality

• We can draw rate conclusions, as we did before, now for $\mathbb{E}[R_k]$

Stochastic gradient descent

Proximal gradient method

• Proximal gradient method solves problems of the form

 $\min_{x} \inf f(x) + g(x)$

where (at least in our analysis)

- $f: \mathbb{R}^n \to \mathbb{R}$ is β -smooth (not necessarily convex)
- $g:\mathbb{R}^n\to\mathbb{R}\cup\{\infty\}$ is closed convex
- For large problems, gradient is expensive to compute
 ⇒ replace by unbiased stochastic approximation of gradient

Unbiased stochastic gradient approximation

- Stochastic gradient:
 - estimator $\widehat{\nabla} f(x)$ outputs $\mathbb{R}^n\text{-valued}$ random variable
 - realization $\widetilde{\nabla} f(x): \mathbb{R}^n \to \mathbb{R}^n$ outputs a realization in \mathbb{R}^n
- An unbiased stochastic gradient approximator $\widehat{\nabla} f$ satisfies

$$\mathbb{E}\widehat{\nabla}f(x) = \nabla f(x)$$

• If x is random variable (as in SGD) an unbiased estimator satisfies

$$\mathbb{E}[\widehat{\nabla}f(x)|x] = \nabla f(x)$$

Stochastic gradient descent (SGD)

- Consider SGD for solving minimize f(x)
- The following iteration generates $(x_k)_{k\in\mathbb{N}}$ of random variables:

$$x_{k+1} = x_k - \gamma_k \widehat{\nabla} f(x_k)$$

since $\widehat{\nabla} f$ outputs random $\mathbb{R}^n\text{-valued}$ variables

• Stochastic gradient descent finds a *realization* of this sequence:

$$x_{k+1} = x_k - \gamma_k \widetilde{\nabla} f(x_k)$$

where $(x_k)_{k\in\mathbb{N}}$ here is a realization which is different every time

- Sloppy in notation for when x_k is random variable vs realization
- Can be efficient if realizations $\widetilde{\nabla} f$ much cheaper than ∇f

Stochastic gradients – Finite sum problems

• Consider *finite sum problems* of the form

$$\underset{x}{\text{minimize}} \underbrace{\frac{1}{N}\left(\sum_{i=1}^{N} f_i(x)\right)}_{f(x)}$$

where $\left(\frac{1}{N}\right)$ is for convenience and)

- all $f_i : \mathbb{R}^n \to \mathbb{R}$ are β_i -smooth (not necessarily convex)
- $f: \mathbb{R}^n \to \mathbb{R}$ is β -smooth (not necessarily convex)
- Training problems of this form, where sum over training data
- Stochastic gradient: select f_i at random and take gradient step

Single function stochastic gradient

- Let I be a $\{1,\ldots,N\}\text{-valued random variable}$
- Let, as before, $\widehat{\nabla}f$ denote the stochastic gradient estimator
- Realization: let i be drawn from probability distribution of I

$$\widetilde{\nabla}f(x) = \nabla f_i(x)$$

where we will use uniform probability distribution

$$p_i = p(I=i) = \frac{1}{N}$$

• Stochastic gradient is unbiased:

$$\mathbb{E}[\widehat{\nabla}f(x)|x] = \sum_{i=1}^{N} p_i \nabla f_i(x) = \frac{1}{N} \sum_{i=1}^{N} \nabla f_i(x) = \nabla f(x)$$

Mini-batch stochastic gradient

- Let \mathcal{B} be set of K-sample mini-batches to choose from:
 - Example: 2-sample mini-batches and N = 4:

 $\mathcal{B} = \{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$

- Number of mini batches $\binom{N}{K}$, each item in $\binom{N-1}{K-1}$ batches
- Let ${\mathbb B}$ be ${\mathcal B}\text{-valued}$ random variable
- Let, as before, $\widehat{\nabla}f$ denote stochastic gradient estimator
- Realization: let B be drawn from probability distribution of $\mathbb B$

$$\widetilde{\nabla}f(x) = \frac{1}{K}\sum_{i\in B} \nabla f_i(x)$$

where we will use uniform probability distribution

$$p_B = p(\mathbb{B} = B) = \frac{1}{|\mathcal{B}|}$$

• Stochastic gradient is unbiased:

$$\mathbb{E}\widehat{\nabla}f(x) = \frac{1}{\binom{N}{K}} \sum_{B \in \mathcal{B}} \frac{1}{K} \sum_{i \in B} \nabla f_i(x) = \frac{\binom{N-1}{K-1}}{\binom{N}{K}K} \sum_{i=1}^N \nabla f_i(x) = \frac{1}{N} \sum_{i=1}^N \nabla f_i(x) = \nabla f(x)$$

Stochastic gradient descent for finite sum problems

- The algorithm, choose $x_0 \in \mathbb{R}^n$ and iterate:
 - 1. Sample a mini-batch $B_k \in \mathcal{B}$ of indices uniformly (prob. $\frac{1}{|\mathcal{B}|}$)
 - 2. Run

$$x_{k+1} = x_k - \frac{\gamma_k}{|B_k|} \sum_{j \in B_k} \nabla f_j(x_k)$$

- Of course, can have $\mathcal{B} = \{1, \dots, N\}$ and sample only one function
- Gives realization of underlying stochastic process
- How about convergence?

SGD – Example

- Let $c_1 + c_2 + c_3 = 0$
- Solve minimize_x $(\frac{1}{2}(||x c_1||_2^2 + ||x c_2||_2^2 + ||x c_3||_2^2) = \frac{3}{2}||x||_2^2 + c$
- Stochastic gradient method with $\gamma_k=1/3$

SGD – Example

- Let $c_1 + c_2 + c_3 = 0$
- Solve minimize_x $(\frac{1}{2}(||x c_1||_2^2 + ||x c_2||_2^2 + ||x c_3||_2^2) = \frac{3}{2}||x||_2^2 + c$
- Stochastic gradient method with $\gamma_k=1/k$

SGD – Example

- Let $c_1 + c_2 + c_3 = 0$
- Solve minimize_x $(\frac{1}{2}(||x c_1||_2^2 + ||x c_2||_2^2 + ||x c_3||_2^2) = \frac{3}{2}||x||_2^2 + c$
- \bullet Gradient method with $\gamma_k=1/3$

• SGD will not converge for constant steps (unlike gradient method)

Fixed step-size SGD does not converge to solution

• We can at most hope for finding point \bar{x} such that

$$0 = \nabla f(\bar{x})$$

i.e., the proximal gradient fixed-point characterization

- Assume x_k such that $0 = \nabla f(x_k)$
 - That $0 = \nabla f(x_k)$ does not imply $0 = \nabla f_i(x_k)$ for all f_i , hence

$$x_{k+1} = x_k - \gamma_k \nabla f_i(x_k) \neq x_k$$

i.e., will move away from prox-grad fixed-point for fixed $\gamma_k>0$

• Need diminishing step-size rule to hope for convergence

Polyak-Ruppert averaging

- Polyak-Ruppert averaging:
 - Output average of iterations instead of last iteration
- Example: SGD with constant steps and its average sequence

SGD with constant step-size

Average of SGD sequence

Nonconvex setting – Assumptions

• We consider problems of the form

minimize f(x)

• Assumptions:

(i) $f: \mathbb{R}^n \to \mathbb{R}$ is β -smooth, for all $x, y \in \mathbb{R}^n$: $f(y) \leq f(x) + \nabla f(x)^T (y - x) + \frac{\beta}{2} ||y - x||_2^2$ (ii) Stochastic gradient of f is unbiased: $\mathbb{E}[\widehat{\nabla}f(x)|x] = \nabla f(x)$ (iii) Variance is bounded: $\mathbb{E}[||\widehat{\nabla}f(x)||_2^2|x] \leq ||\nabla f(x)||_2^2 + M^2$ (iv) No nonsmooth term, i.e., g = 0(v) A minimizer exists and $p^* = \min_x f(x)$ is optimal value (vi) Step-sizes satisfy $\sum_{k=1}^{\infty} \gamma_k = \infty$ and $\sum_{k=1}^{\infty} \gamma_k^2 < \infty$

- Comments:
 - (iii): variance is bounded by M^2 since

$$\mathbb{E}[\|\widehat{\nabla}f(x)\|_{2}^{2}|x] = \operatorname{Var}[\|\widehat{\nabla}f(x)\|_{2}|x] + \|\mathbb{E}[\widehat{\nabla}f(x)|x]\|_{2}^{2}$$
$$= \operatorname{Var}[\|\widehat{\nabla}f(x)\|_{2}|x] + \|\nabla f(x)\|_{2}^{2}$$

• (iii): analysis is slightly simpler if assuming $\mathbb{E}[\|\widehat{\nabla}f(x)\|_2^2|x] \leq G$ 59

Nonconvex setting – Analysis

• Upper bound on f in Assumption (i) gives

$$\begin{split} \mathbb{E}[f(x_{k+1})|x_k] \\ &\leq \mathbb{E}[f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{\beta}{2} \|x_{k+1} - x_k\|_2^2 |x_k] \\ &= f(x_k) - \gamma_k \nabla f(x_k)^T \mathbb{E}[\widehat{\nabla}f(x_k)|x_k] + \frac{\beta \gamma_k^2}{2} \mathbb{E}[\|\widehat{\nabla}f(x_k)\|_2^2 |x_k] \\ &\leq f(x_k) - \gamma_k \nabla f(x_k)^T \nabla f(x_k) + \frac{\beta \gamma_k^2}{2} (\|\nabla f(x_k)\|_2^2 + M^2) \\ &= f(x_k) - \gamma_k (1 - \frac{\beta \gamma_k}{2}) \|\nabla f(x_k)\|_2^2 + \frac{\beta \gamma_k^2}{2} M^2 \end{split}$$

• Let $\gamma_k \leq \frac{1}{\beta}$ (true for large enough k since γ_k summable):

$$\mathbb{E}[f(x_{k+1})|x_k] \le f(x_k) - \frac{\gamma_k}{2} \|\nabla f(x_k)\|_2^2 + \frac{\beta \gamma_k^2}{2} M^2$$

• Subtracting p^{\star} from both sides gives

$$\mathbb{E}[f(x_{k+1})|x_k] - p^{\star} \le f(x_k) - p^{\star} - \frac{\gamma_k}{2} \|\nabla f(x_k)\|_2^2 + \frac{\beta \gamma_k^2}{2} M^2$$

Total expectation

Taking total expectation gives Lyapunov inequality

$$\underbrace{\mathbb{E}[f(x_{k+1})] - p^{\star}}_{V_{k+1}} \leq \underbrace{\mathbb{E}[f(x_k)] - p^{\star}}_{V_k} - \underbrace{\frac{\gamma_k}{2}\mathbb{E}[\|\nabla f(x_k)\|_2^2]}_{R_k} + \underbrace{\frac{\beta\gamma_k^2}{2}M^2}_{W_k}$$

Consequences:

• $V_k = \mathbb{E}[f(x_k)] - p^*$ converges (not necessarily to 0) • $\sum_{l=0}^k R_l \le V_0 + \sum_{l=0}^k W_k$, which, when multiplied by 2 gives

$$\sum_{l=0}^{k} \gamma_{l} \mathbb{E}[\|\nabla f(x_{l})\|_{2}^{2}] \leq 2(f(x_{0}) - p^{\star}) + \sum_{l=1}^{k} \gamma_{l}^{2} \beta M^{2}$$

Minimum gradient bound tradeoff

• The Lyapunov inequality tells us that

$$\sum_{l=0}^{k} \gamma_{l} \mathbb{E}[\|\nabla f(x_{l})\|_{2}^{2}] \leq 2(f(x_{0}) - p^{\star}) + \sum_{l=1}^{k} \gamma_{l}^{2} \beta M^{2}$$

• Using that

$$\min_{l=0,...,k} \mathbb{E}[\|\nabla f(x_l)\|_2^2] \sum_{l=0}^k \gamma_l \le \sum_{l=0}^k \gamma_l \mathbb{E}[\|\nabla f(x_l)\|_2^2]$$

we conclude that the minimum gradient norm satisfies

$$\min_{l=0,\dots,k} \mathbb{E}[\|\nabla f(x_l)\|_2^2] \le \frac{2(f(x_0) - p^*) + \sum_{l=0}^k \gamma_l^2 \beta M^2}{\sum_{l=0}^k \gamma_l}$$

where terms in the numerator:

- $2(f(x_0) p^*)$ is due to initial suboptimality
- $\sum_{l=0}^{k} \gamma_l^2 \beta M^2$ is due to noise in gradient estimates (if M = 0, use $\gamma_k = \frac{1}{\beta}$ to recover (proximal) gradient bound)

Minimum gradient convergence

• What conclusions can we draw from

$$\min_{l=0,\dots,k} \mathbb{E}[\|\nabla f(x_l)\|_2^2] \le \frac{2(f(x_0) - p^*) + \sum_{l=0}^k \gamma_l^2 \beta M^2}{\sum_{l=0}^k \gamma_l}$$

• Let $C=\sum_{l=0}^{\infty}\gamma_l^2<\infty$ (finite since $(\gamma_k^2)_{k\in\mathbb{N}}$ summable) then

$$\min_{l=0,\dots,k} \mathbb{E}[\|\nabla f(x_l)\|_2^2] \le \frac{2(f(x_0) - p^*) + C\beta M^2}{\sum_{l=0}^k \gamma_l} \to 0$$

as $k \to \infty$ since $(\gamma_k)_{k \in \mathbb{N}}$ is not summable

- Consequences:
 - Smallest expected value of gradient norm square converges to 0
 - We don't know what happens with latest expected value
 - Gradient converges to 0 for algorithm realizations almost surely

Convexity and strong convexity

• If we in addition assume convexity, we can show

$$R_k \le \frac{\|x_0 - x^\star\|_2^2 + \sum_{l=0}^k \gamma_l^2 M^2}{2\sum_{l=0}^k \gamma_l}$$

where

$$R_k = \min_{l=0,\dots,k} \mathbb{E}[f(x_k) - f(x^*)] \quad \text{or} \quad R_k = \mathbb{E}[f(\bar{x}_k) - f(x^*)]$$

and \bar{x}_k is an average of previous iterates

- Smallest or average function value converges to $f(x^{\star})$
 - in expectation
 - for algorithm realizations with probility 1
 - no last iterate convergence bound
- Assumption: f smooth and strongly convex
 - Proximal gradient method achieves linear convergence
 - Stochastic gradient descent does not achieve linear convergence

Convergence results

• Convergence in nonconvex and convex settings are:

$$R_k \le \frac{V_0 + D\sum_{l=0}^k \gamma_l^2}{b\sum_{l=0}^k \gamma_l}$$

for different V_0 , D, and b and R_k

- Same dependance on step-size
- What step-sizes can we use and have convergence?
Step-size requirements

- We shift indices k and l by one to start algorithm with k = 1
- Step-sizes: $\sum_{l=1}^{\infty}\gamma_l^2<\infty$ and $\sum_{l=1}^{\infty}\gamma_l=\infty$ make upper bound

$$R_k \leq \frac{V_1 + D\sum_{l=1}^k \gamma_l^2}{b\sum_{l=1}^k \gamma_l} \to 0$$

as $k \to \infty$

• Step-size choices that satisfy assumptions:

•
$$\gamma_k = c/k$$
 for some $c > 0$

•
$$\gamma_k = c/k^{\alpha}$$
 for $\alpha \in (0.5, 1)$

Estimating rates via integrals

- For convergence need to verify $\sum_{l=1}^{\infty}\gamma_l=\infty$ and $\sum_{l=1}^{\infty}\gamma_l^2<\infty$
- To estimate rates we need to estimate $\sum_{l=1}^{k} \gamma_l$ and $\sum_{l=1}^{k} \gamma_l^2$
- Assume $\gamma_l=\phi(l)$ with decreasing and nonnegative $\phi:\mathbb{R}_+\to\mathbb{R}_+$
- Then we can estimate using integrals

$$\int_{t=1}^{k} \phi(t)dt + \phi(k) \le \sum_{l=1}^{k} \phi(l) \le \int_{t=1}^{k} \phi(t)dt + \phi(1)$$

• We can also remove $\phi(k)$ from lower bound to simplify

Estimating rates – Example $\gamma_k = c/k$

• Let $\gamma_k=\phi(k)$ with $\phi(k)=c/k$ and estimate the sum

$$\sum_{l=1}^{k} \gamma_l \ge \int_{t=1}^{k} \frac{c}{t} dt = c[\log(t)]_{t=1}^{k} = c\log(k)$$

(which diverges as $k \to \infty$ as required) and the finite sum

$$\sum_{l=1}^{k} \gamma_l^2 \le \int_{t=1}^{k} \frac{c^2}{t^2} dt + \phi(1)^2 = c^2 [-1/t]_{t=1}^k + c^2 = c^2 (2 - 1/k) \le 2c^2$$

• We use these to arrive at the following rate when $\gamma_k = c/k$:

$$R_k \le \frac{V_1 + D\sum_{l=1}^k \gamma_l^2}{b\sum_{l=1}^k \gamma_l} \le \frac{V_1 + 2Dc^2}{bc\log k} = \frac{V_1/c + 2Dc}{b\log k}$$

so we have $O(1/\log k)$ convergence, which is slow

• The constant c trades off the two constant terms V_1 and D

Estimating rates – Example $\gamma_k = c/k^{\alpha}$

+ Let $\gamma_k=\phi(k)$ with $\phi(k)=c/k^\alpha$ and $\alpha\in(0.5,1)$ and estimate

$$\sum_{l=1}^{k} \gamma_l \ge \int_{t=1}^{k} \frac{c}{t^{\alpha}} dt = c \left[\frac{t^{1-\alpha}}{1-\alpha} \right]_{t=1}^{k} = \frac{c}{1-\alpha} (k^{1-\alpha} - 1)$$

(which diverges as $k \to \infty$ since slower than 1/k) and the sum

$$\sum_{l=1}^{k} \gamma_l^2 \le \int_{t=1}^{k} \frac{c^2}{t^{2\alpha}} dt + \phi(1)^2 = c^2 \left[\frac{t^{1-2\alpha}}{1-2\alpha} \right]_{t=1}^k + c^2 \le \frac{c^2}{2\alpha-1} + c^2 =: c^2 C$$

where the last inequality holds since $\alpha > 0.5$

• We use these to arrive at the following rate when $\gamma_k = c/k^{\alpha}$:

$$R_k \le \frac{V_1 + D\sum_{l=1}^k \gamma_l^2}{b\sum_{l=1}^k \gamma_l} \le \frac{(1-\alpha)(V_1/c + DCc)}{b(k^{1-\alpha} - 1)}$$

so we have $O(1/k^{1-\alpha})$ rate with $\alpha \in (0.5, 1)$

- Rate improves with smaller α and $1/k^{1-\alpha} \rightarrow \sqrt{k}$ as $\alpha \rightarrow 0.5$

Refining the step-size analysis

• Have not assumed $\sum_{l=1}^{\infty}\gamma_l^2$ finite for general convergence bound

$$R_k \le \frac{V_1 + D\sum_{l=1}^k \gamma_l^2}{b\sum_{l=1}^k \gamma_l}$$

We can divide the sum into two parts

$$R_k \leq \frac{V_1}{b\sum_{l=1}^k \gamma_l} + \frac{D}{b\frac{\sum_{l=1}^k \gamma_l}{\sum_{l=1}^k \gamma_l^2}}$$

• So $R_k \to 0$ if $\sum_{l=1}^k \gamma_l \to \infty$ and $\frac{\sum_{l=1}^k \gamma_l}{\sum_{l=1}^k \gamma_l^2} \to \infty$ (don't need $\sum_{l=1}^k \gamma_l^2 < \infty$ for $R_k \to 0$)

Refined step-size analysis interpretation

• Let
$$\psi_1(k) = \sum_{l=1}^k \gamma_l$$
 and $\psi_2(k) = \frac{\sum_{l=1}^k \gamma_l}{\sum_{l=1}^k \gamma_l^2}$ and restate bound:

$$R_k \le \frac{V_1}{b\psi_1(k)} + \frac{D}{b\psi_2(k)}$$

• ψ_1 decides how fast V_1 $(f(x_k) - p^*$ or $||x_k - x^*||_2)$ is supressed

- ψ_2 decides how fast D is supressed, where D can be
 - G^2 if assumption $\mathbb{E}[\|\widehat{\nabla}f(x)\|_2^2|x] \leq G^2$
 - M^2 if assumption $\mathbb{E}[\|\widehat{\nabla}f(x)\|_2^2|x] \le \|\nabla f(x)\|_2^2 + M^2$
- There is a tradeoff between supressing these quantities
- For previous step-size choices, ψ_1 is slower
- Will present step-sizes where ψ_2 is slower
- Actual convergence very much dependent on constants V_1 and D

Estimating rates – Example $\gamma_k = c/\sqrt{k}$

• We know from before that

$$\sum_{l=1}^{k} \gamma_l = \sum_{l=1}^{k} c/k^{0.5} \ge 2c(\sqrt{k} - 1) \approx 2c\sqrt{k}$$

and that the sum of step-sizes does not converge, but satisfies

$$\sum_{l=1}^k \gamma_l^2 \leq \sum_{l=1}^k c^2/k = c^2 \log(k)$$

• Since $\sum_{l=1}^k \gamma_l / \sum_{l=1}^k \gamma_l^2$ converges, also R_k converges as

$$R_k \le \frac{V_1}{2bc\sqrt{k}} + \frac{Dc}{b\frac{\sqrt{k}}{\log k}}$$

with rate $O(\log k/\sqrt{k})$

Estimating rates – Example $\gamma_k = c/k^{\alpha}$

- Let now $\alpha \in (0, 0.5)$ for which γ_k is not square summable
- We know form before that

$$\sum_{l=1}^{k} \gamma_l \ge \frac{c}{1-\alpha} (k^{1-\alpha} - 1)$$

and the squared sum does not converge, but satisfies

$$\sum_{l=1}^{k} \gamma_l^2 \le c^2 \left[\frac{t^{1-2\alpha}}{1-2\alpha} \right]_{t=1}^k + c^2 = \frac{c^2}{1-2\alpha} \left(k^{1-2\alpha} - 1 \right) + c^2 = \frac{c^2}{1-2\alpha} \left(k^{1-2\alpha} - 2\alpha \right)$$

• We use these to arrive at the following rate when $\gamma_k = c/k^{\alpha}$:

$$R_k \le \frac{(1-\alpha)V_1}{2bc(k^{1-\alpha}-1)} + \frac{(1-\alpha)Dc}{b(1-2\alpha)\frac{k^{1-\alpha}-1}{k^{1-2\alpha}-2\alpha}}$$

with rate (ignoring constant terms) is worst of

$$O(1/k^{1-\alpha}) \qquad \text{and} \qquad O(1/k^{1-\alpha}/k^{1-2\alpha}) = O(1/k^{\alpha})$$

which is the latter since $\alpha \in (0,0.5)$

• Rate improves with larger α and $k^{\dot{\alpha}} \rightarrow \sqrt{k}$ as $\alpha \rightarrow 0.5$

How about fixed step-size

- Algorithms run in practice a finite number of iterations \boldsymbol{K}
- What happens with fixed-step size scheme after K steps?
- We fix $\gamma_k = \bar{\gamma} = \theta / \sqrt{K}$ with $\theta > 0$ to be the same for all k
- Our convergence result says:

$$R_K \le \frac{V_1 + D\sum_{l=1}^K \gamma_l^2}{b\sum_{l=1}^K \gamma_l} = \frac{V_1 + DK\bar{\gamma}^2}{bK\bar{\gamma}} = \frac{V_1 + D\theta^2}{b\sqrt{K}\theta}$$

- Comments:
 - get \sqrt{K} convergence rate until iteration K
 - but R_k will not converge to 0 as $k \to \infty$
 - that $\gamma_k = \theta / \sqrt{K}$ holds for every fixed step-size for some θ
 - actual convergence very much dependent on V_1 , D , and θ

Rate comparison

Setting	Gradient	Stochastic gradient $\gamma_k = 1/k^{lpha}$			
		$\alpha = 1$	$\alpha \in (0,5,1)$	$\alpha = 0.5$	$\alpha \in (0, 0.5)$
Nonconvex	$O(\frac{1}{k})$	$O(\frac{1}{\log k})$	$O(\frac{1}{k^{1-\alpha}})$	$O(\frac{\log k}{\sqrt{k}})$	$O(\frac{1}{k^{\alpha}})$
Convex	$O(\frac{1}{k})$	$O(\frac{1}{\log k})$	$O(\frac{1}{k^{1-\alpha}})$	$O(\frac{\log k}{\sqrt{k}})$	$O(\frac{1}{k^{\alpha}})$
Strongly convex	linear	sublinear	sublinear	sublinear	sublinear

- Stochastic gradient descent slower in all settings
- However, every iteration in stochastic gradient descent cheaper

Finite sum comparison

• We consider

minimize
$$\sum_{i=1}^{N} f_i(x)$$

where N is large and use one f_i for each stochastic gradient

- N iterations of stochastic gradient is at cost of 1 full gradient
- Progress after k epochs (stochastic) vs k iterations (full):

Setting	Gradient	Stochastic gradient $\gamma_k=1/k^{lpha}$				
		$\alpha = 1$	$\alpha \in (0,5,1)$	$\alpha = 0.5$	$\alpha \in (0, 0.5)$	
Nonconvex	$O(\frac{1}{k})$	$O(\frac{1}{\log Nk})$	$O(\frac{1}{(Nk)^{1-\alpha}})$	$O(\frac{\log Nk}{\sqrt{Nk}})$	$O(\frac{1}{(Nk)^{\alpha}})$	
Convex	$O(\frac{1}{k})$	$O(\frac{1}{\log Nk})$	$O(\frac{1}{(Nk)^{1-\alpha}})$	$O(\frac{\log Nk}{\sqrt{Nk}})$	$O(\frac{1}{(Nk)^{\alpha}})$	

Finite sum comparison – Quantification

- Assume that finite sum of N equals 10 million summands
- Computational budget is that we run k = 10 iterations/epochs
- Replacing ordo expressions with numbers:

Setting	Gradient	Stochastic gradient $\gamma_k = 1/k^{\alpha}$				
		$\alpha = 1$	$\alpha=0.75$	$\alpha = 0.5$	$\alpha = 0.25$	
Nonconvex	0.1	0.054	0.01	0.0018	0.01	
Convex	0.1	0.054	0.01	0.0018	0.01	

- Stochastic gives better ordo-rates (but constants are worse)
- Significant difference within stochastic methods, $\gamma_k = \frac{c}{\sqrt{k}}$ best
- Actual performance depends a lot on relation between constants

Thanks for your attention

- Most slides from Optimization for Learning at Lund University https://canvas.education.lu.se/courses/7714
- Short "flipped classroom" style videos available for many topics http://www.control.lth.se/fileadmin/control/ Education/EngineeringProgram/FRTN50/VideoPlatform/ VideoLecturePlatform.html