Stochastic Gradient Descent

Pontus Giselsson

Finite sum problems

Finite sum problems

- Yesterday, you saw problems of the form

$$
\operatorname{minimize} f(x)+g(x)
$$

where

- f is smooth (and potentially convex)
- g is nonsmooth and convex
- Algorithm: proximal gradient method
- Sometimes there is additional structure, we will treat

$$
\operatorname{minimize} \underbrace{\sum_{i=1}^{N} f_{i}(x)}_{f(x)}
$$

where f is of finite sum form (and $g \equiv 0$)

- Can be solved by gradient method
- If N is large, stochastic gradient descent is often preferrable

Why finite sum?

Finite sum problems appear naturally, e.g., in supervised learning

What is supervised learning?

- Let (x, y) represent object and label pairs
- Object $x \in \mathcal{X} \subseteq \mathbb{R}^{n}$
- Label $y \in \mathcal{Y} \subseteq \mathbb{R}^{K}$
- Available: Labeled training data (training set) $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}$
- Data $x_{i} \in \mathbb{R}^{n}$, or examples (often n large)
- Labels $y_{i} \in \mathbb{R}^{K}$, or response variables (often $K=1$)

Objective: Find a model (function) $m(x)$:

- that takes data (example, object) x as input
- and predicts corresponding label (response variable) y

How?:

- learn m from training data, but should generalize to all (x, y)

Relation to optimization

Training the "machine" m consists in solving optimization problem

Regression vs Classification

There are two main types of supervised learning tasks:

- Regression:
- Predicts quantities
- Real-valued labels $y \in \mathcal{Y}=\mathbb{R}^{K}$ (will mainly consider $K=1$)
- Classification:
- Predicts class belonging
- Finite number of class labels, e.g., $y \in \mathcal{Y}=\{1,2, \ldots, k\}$

Regression training problem

- Objective: Find data model m such that for all (x, y) :

$$
m(x)-y \approx 0
$$

- Let model output $u=m(x)$; Examples of data misfit losses

$$
\begin{aligned}
& L(u, y)=\frac{1}{2}(u-y)^{2} \\
& L(u, y)=|u-y| \\
& L(u, y)= \begin{cases}\frac{1}{2}(u-y)^{2} & \text { if }|u-v| \leq c \\
c(|u-y|-c / 2) & \text { else }\end{cases}
\end{aligned}
$$

Square

- Training: find model m that minimizes sum of training set losses

$$
\underset{m}{\operatorname{minimize}} \sum_{i=1}^{N} L\left(m\left(x_{i}\right), y_{i}\right)
$$

Supervised learning - Least squares

- Parameterize model m and set a linear (affine) structure

$$
m(x ; \theta)=w^{T} x+b
$$

where $\theta=(w, b)$ are parameters (also called weights)

- Training: find model parameters that minimize training cost

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N} L\left(m\left(x_{i} ; \theta\right), y_{i}\right)=\frac{1}{2} \sum_{i=1}^{N}\left(w^{T} x_{i}+b-y_{i}\right)^{2}
$$

(note: optimization over model parameters θ)

- Problem is convex in θ since $L(\cdot, y)$ convex and model affine
- Once trained, predict response of new input x as $\hat{y}=w^{T} x+b$

Example - Least squares

- Find affine function parameters that fit data:

Example - Least squares

- Find affine function parameters that fit data:

- Data points (x, y) marked with (*), LS model $w x+b(-)$

Example - Least squares

- Find affine function parameters that fit data:

- Data points (x, y) marked with (*), LS model $w x+b(-)$
- Least squares finds affine function that minimizes squared distance 10

Binary classification

- Labels $y=0$ or $y=1$ (alternatively $y=-1$ or $y=1$)
- Training problem

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N} L\left(m\left(x_{i} ; \theta\right), y_{i}\right)
$$

- Design loss L to train model parameters θ such that:
- $m\left(x_{i} ; \theta\right)<0$ for pairs $\left(x_{i}, y_{i}\right)$ where $y_{i}=0$
- $m\left(x_{i} ; \theta\right)>0$ for pairs $\left(x_{i}, y_{i}\right)$ where $y_{i}=1$
- Predict class belonging for new data points x with trained θ^{*} :
- $m\left(x ; \theta^{*}\right)<0$ predict class $y=0$
- $m\left(x ; \theta^{*}\right)>0$ predict class $y=1$
objective is that this prediction is accurate on unseen data

Logistic regression

- Logistic regression uses:
- affine parameterized model $m(x ; \theta)=w^{T} x+b$ (where $\theta=(w, b)$)
- loss function $L(u, y)=\log \left(1+e^{u}\right)-y u$ (if labels $y=0, y=1$)
- Training problem, find model parameters by solving:

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N} L\left(m\left(x_{i} ; \theta\right), y_{i}\right)=\sum_{i=1}^{N}\left(\log \left(1+e^{x_{i}^{T} w+b}\right)-y_{i}\left(x_{i}^{T} w+b\right)\right)
$$

- Training problem convex in $\theta=(w, b)$ since:
- model $m(x ; \theta)$ is affine in θ
- loss function $L(u, y)$ is convex in u

Prediction

- Use trained model m to predict label y for unseen data point x
- Since affine model $m(x ; \theta)=w^{T} x+b$, prediction for x becomes:
- If $w^{T} x+b<0$, predict corresponding label $y=0$
- If $w^{T} x+b>0$, predict corresponding label $y=1$
- If $w^{T} x+b=0$, predict either $y=0$ or $y=1$
- A hyperplane (decision boundary) separates class predictions:

$$
H:=\left\{x: w^{T} x+b=0\right\}
$$

Multiclass logistic regression

- K classes in $\{1, \ldots, K\}$ and data/labels $(x, y) \in \mathcal{X} \times \mathcal{Y}$
- Labels: $y \in \mathcal{Y}=\left\{e_{1}, \ldots, e_{K}\right\}$ where $\left\{e_{j}\right\}$ coordinate basis
- Example, $K=5$ class 2: $y=e_{2}=[0,1,0,0,0]^{T}$
- Use one model per class $m_{j}\left(x ; \theta_{j}\right)$ for $j \in\{1, \ldots, K\}$
- Objective: Find $\theta=\left(\theta_{1}, \ldots, \theta_{K}\right)$ such that for all models j :
- $m_{j}\left(x ; \theta_{j}\right) \gg 0$, if label $y=e_{j}$ and $m_{j}\left(x ; \theta_{j}\right) \ll 0$ if $y \neq e_{j}$
- Training problem loss function:

$$
L(u, y)=\log \left(\sum_{j=1}^{K} e^{u_{j}}\right)-u^{T} y
$$

where label y is a "one-hot" basis vector, is convex in u

Multiclass logistic regression - Training problem

- Affine data model $m(x ; \theta)=w^{T} x+b$ with

$$
w=\left[w_{1}, \ldots, w_{K}\right] \in \mathbb{R}^{n \times K}, \quad b=\left[b_{1}, \ldots, b_{K}\right]^{T} \in \mathbb{R}^{K}
$$

- One data model per class

$$
m(x ; \theta)=\left[\begin{array}{c}
m_{1}\left(x ; \theta_{1}\right) \\
\vdots \\
m_{K}\left(x ; \theta_{K}\right)
\end{array}\right]=\left[\begin{array}{c}
w_{1}^{T} x+b_{1} \\
\vdots \\
w_{K}^{T} x+b_{K}
\end{array}\right]
$$

- Training problem:

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N} \log \left(\sum_{j=1}^{K} e^{w_{j}^{T} x_{i}+b_{j}}\right)-y^{T}\left(w^{T} x_{i}+b\right)
$$

where y is "one-hot" encoding of label

- Problem is convex since affine model is used

Example - Linearly separable data

- Problem with 7 classes

Example - Linearly separable data

- Problem with 7 classes and affine multiclass model

Example - Quadratically separable data

- Same data, new labels in 6 classes

Example - Quadratically separable data

- Same data, new labels in 6 classes, affine model

Example - Quadratically separable data

- Same data, new labels in 6 classes, quadratic model

Features

- Used quadratic features in last example
- Same procedure as before:
- replace data vector x_{i} with feature vector $\phi\left(x_{i}\right)$
- run classification method with feature vectors as inputs
- Model still affine in parameters, training problem still convex

Deep learning

- Can be used both for classification and regression
- Deep learning training problem is of the form

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N} L\left(m\left(x_{i} ; \theta\right), y_{i}\right)
$$

where typically

- $L(u, y)=\frac{1}{2}\|u-y\|_{2}^{2}$ is used for regression
- $L(u, y)=\log \left(\sum_{j=1}^{K} e^{u_{j}}\right)-y^{T} u$ is used for K-class classification
- Difference to previous convex methods: Nonlinear model $m(x ; \theta)$
- Deep learning regression generalizes least squares
- DL classification generalizes multiclass logistic regression
- Nonlinear model makes training problem nonconvex

Deep learning - Model

- Nonlinear model of the following form is often used:

$$
m(x ; \theta):=W_{n} \sigma_{n-1}\left(W_{n-1} \sigma_{n-2}\left(\cdots\left(W_{2} \sigma_{1}\left(W_{1} x+b_{1}\right)+b_{2}\right) \cdots\right)+b_{n-1}\right)+b_{n}
$$

- The σ_{j} are nonlinear and called activation functions
- Composition of nonlinear $\left(\sigma_{j}\right)$ and affine $\left(W_{j}(\cdot)+b_{j}\right)$ operations
- Each σ_{j} function constitutes a hidden layer in the model network
- Graphical representation with three hidden layers

- Why this structure?
- (Assumed) universal function approximators
- Efficient gradient computation using backpropagation (chain rule)

Examples of activation functions

Name	$\sigma(u)$
Sigmoid	$\frac{1}{1+e^{-u}}$
ReLU	$\max (u, 0)$
LeakyReLU	$\max (u, \alpha u)$
ELU	$\begin{cases}u \\ \alpha\left(e^{u}-1\right) & \text { else }\end{cases}$
SELU	u α $\alpha\left(e^{u}-1\right)$ else

Learning features

- Used prespecified feature maps (or Kernels) in convex methods
- Deep learning instead learns feature map during training
- Define parameter (weight) dependent feature vector:

$$
\phi(x ; \theta):=\sigma_{n-1}\left(W_{n-1} \sigma_{n-2}\left(\cdots\left(W_{2} \sigma_{1}\left(W_{1} x+b_{1}\right)+b_{2}\right) \cdots\right)+b_{n-1}\right)
$$

- Model becomes $m(x ; \theta)=W_{n} \phi(x ; \theta)+b_{n}$
- Inserted into training problem:

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N} L\left(W_{n} \phi\left(x_{i} ; \theta\right)+b_{n}, y_{i}\right)
$$

same as before, but with learned (parameter-dependent) features

- Learning features at training makes training nonconvex

Learning features - Graphical representation

- Fixed features gives convex training problems

- Learning features gives nonconvex training problems

- Output of last activation function is feature vector

Deep learning training problem

- Training problem:

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{N} L\left(m\left(x_{i} ; \theta\right), y_{i}\right)
$$

where typically

- $L(u, y)=\frac{1}{2}\|u-y\|_{2}^{2}$ is used for regression
- $L(u, y)=\log \left(\sum_{j=1}^{K} e^{u_{j}}\right)-y^{T} u$ is used for K-class classification
- Model $m(x ; \theta)$ is nonlinear
- Training problem becomes nonconvex
- If activation functions are smooth, training problem is smooth

Proving convergence

Deterministic and stochastic algorithms

- We have deterministic algorithms

$$
x_{k+1}=\mathcal{A}_{k} x_{k}
$$

that given initial x_{0} will give the same sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$

- We will also see stochastic algorithms that iterate

$$
x_{k+1}=\mathcal{A}_{k}\left(\xi_{k}\right) x_{k}
$$

where ξ_{k} is a random variable that also decides the mapping

- $\left(x_{k}\right)_{k \in \mathbb{N}}$ is a stochastic process of random variables
- when running the algorithm, we evaluate ξ_{k} and get a realization
- different realization $\left(x_{k}\right)_{k \in \mathbb{N}}$ every time even if started at same x_{0}
- Stochastic algorithms useful although problem is deterministic

Types of convergence

- Let x^{\star} be solution to composite problem and $p^{\star}=f\left(x^{\star}\right)+g\left(x^{\star}\right)$
- We will see convergence of different quantities in different settings
- For deterministic algorithms that generate $\left(x_{k}\right)_{k \in \mathbb{N}}$, we will see
- Sequence convergence: $x_{k} \rightarrow x^{\star}$
- Function value convergence: $f\left(x_{k}\right)+g\left(x_{k}\right) \rightarrow p^{\star}$
- If $g=0$, gradient norm convergence: $\left\|\nabla f\left(x_{k}\right)\right\|_{2} \rightarrow 0$
- Convergence is stronger as we go up the list
- First two common in convex setting, last in nonconvex

Convergence for stochastic algorithms

- Stochastic algorithms described by stochastic process $\left(x_{k}\right)_{k \in \mathbb{N}}$
- When algorithm is run, we get realization of stochastic process
- We analyze stochastic process and will see, e.g.,:
- Expected sequence convergence: $\mathbb{E}\left[\left\|x_{k}-x^{\star}\right\|_{2}\right] \rightarrow 0$
- Expected function value convergence: $\mathbb{E}\left[f\left(x_{k}\right)+g\left(x_{k}\right)-p^{\star}\right] \rightarrow 0$
- If $g=0$, expected gradient norm convergence: $\mathbb{E}\left[\left\|\nabla f\left(x_{k}\right)\right\|_{2}\right] \rightarrow 0$
- Says what happens with expected value of different quantities

What happens with algorithm realizations?

- We will conclude that expected value of some quantity, e.g.,:

$$
\mathbb{E}\left[\left\|x_{k}-x^{\star}\right\|_{2}\right] \quad \text { or } \quad \mathbb{E}\left[f\left(x_{k}\right)+g\left(x_{k}\right)-p^{\star}\right] \quad \text { or } \mathbb{E}\left[\left\|\nabla f\left(x_{k}\right)\right\|_{2}\right]
$$

converges to 0 , where all quantities are nonnegative

- What happens with the actual algorithm realizations?
- We can make conclusions by the following result: If
- $\left(Z_{k}\right)_{k \in \mathbb{N}}$ is a stochastic process with $Z_{k} \geq 0$
- the expected value $\mathbb{E}\left[Z_{k}\right]$ converges to 0 as $k \rightarrow \infty$ then realizations converge to 0 almost surely (with probability 1)
- That expected value of nonnegative quantity goes to 0 is strong

Convergence rates

- We have only talked about convergence, not convergence rate
- Rates indicate how fast (in iterations) algorithm reaches solution
- Typically divided into:
- Sublinear rates
- Linear rates (also called geometric rates)
- Quadratic rates (or more generally superlinear rates)
- Sublinear rates slowest, quadratic rates fastest
- Linear rates further divided into Q-linear and R-linear
- Quadratic rates further divided into Q-quadratic and R-quadratic

Linear rates

- A Q-linear rate with factor $\rho \in[0,1)$ can be:

$$
\begin{aligned}
f\left(x_{k+1}\right)+g\left(x_{k+1}\right)-p^{\star} & \leq \rho\left(f\left(x_{k}\right)+g\left(x_{k}\right)-p^{\star}\right) \\
\mathbb{E}\left[\left\|x_{k+1}-x^{\star}\right\|_{2}\right] & \leq \rho \mathbb{E}\left[\left\|x_{k}-x^{\star}\right\|_{2}\right]
\end{aligned}
$$

- An R-linear rate with factor $\rho \in[0,1)$ and some $C>0$ can be:

$$
\left\|x_{k}-x^{\star}\right\|_{2} \leq \rho^{k} C
$$

this is implied by Q-linear rate and has exponential decrease

- Linear rate is superlinear if $\rho=\rho_{k}$ and $\rho_{k} \rightarrow 0$ as $k \rightarrow \infty$
- Examples:
- (Accelerated) proximal gradient with strongly convex cost
- Randomized coordinate descent with strongly convex cost
- BFGS has local superlinear with strongly convex cost
- but SGD with strongly convex cost gives sublinear rate

Linear rates - Comparison

- Different rates in log-lin plot

- Called linear rate since linear in log-lin plot

Quadratic rates

- Q-quadratic rate with factor $\rho \in[0,1)$ can be:

$$
\begin{aligned}
f\left(x_{k+1}\right)+g\left(x_{k+1}\right)-p^{\star} & \leq \rho\left(f\left(x_{k}\right)+g\left(x_{k}\right)-p^{\star}\right)^{2} \\
\left\|x_{k+1}-x^{\star}\right\|_{2} & \leq \rho\left\|x-x^{\star}\right\|_{2}^{2}
\end{aligned}
$$

- R-quadratic rate with factor $\rho \in[0,1)$ and some $C>0$ can be:

$$
\left\|x_{k}-x^{\star}\right\|_{2} \leq \rho^{2 k} C
$$

- Quadratic ($\rho^{2 k}$) vs linear (ρ^{k}) rate with factor $\rho=0.9$:

Quadratic
1.000000000000
0.900000000000
0.729000000000
0.478296799000
0.205891068000
0.038132029400
0.0000015493830
0.000000000002

Linear
1.000000000000
0.900000000000
0.810000000000
0.659000000000
0.590499450000
0.531440964000
0.478296936000
0.430467270000

- Example: Locally for Newton's method with strongly convex cost

Quadratic rates - Comparison

- Different rates in log-lin scale

- Quadratic convergence is superlinear

Sublinear rates

- A rate is sublinear if it is slower than linear
- A sublinear rate can, for instance, be of the form

$$
\begin{aligned}
f\left(x_{k}\right)+g\left(x_{k}\right)-p^{\star} & \leq \frac{C}{\psi(k)} \\
\left\|x_{k+1}-x_{k}\right\|_{2}^{2} & \leq \frac{C}{\psi(k)} \\
\min _{l=0, \ldots, k} \mathbb{E}\left[\left\|\nabla f\left(x_{l}\right)\right\|_{2}^{2}\right] & \leq \frac{C}{\psi(k)}
\end{aligned}
$$

where $C>0$ and ψ decides how fast it decreases, e.g.,

- $\psi(k)=\log k$: Stochastic gradient descent $\gamma_{k}=c / k$
- $\psi(k)=\sqrt{k}$: Stochastic gradient descent: optimal γ_{k}
- $\psi(k)=k$: Proximal gradient, coordinate proximal gradient
- $\psi(k)=k^{2}$: Accelerated proximal gradient method with improved rate further down the list
- We say that the rate is $O\left(\frac{1}{\psi(k)}\right)$ for the different ψ
- To be sublinear ψ has slower than exponential growth as

Sublinear rates - Comparison

- Different rates on log-lin scale

- Many iterations may be needed for high accuracy

Proving convergence rates

- To prove a convergence rate typically requires
- Using inequalities that describe problem class
- Using algorithm definition equalities (or inclusions)
- Combine these to a form so that convergence can be concluded
- Linear and quadratic rates proofs conceptually straightforward
- Sublinear rates implicit via a Lyapunov inequality

Proving linear or quadratic rates

- If we suspect linear or quadratic convergence for $V_{k} \geq 0$:

$$
V_{k+1} \leq \rho V_{k}^{p}
$$

where $\rho \in[0,1)$ and $p=1$ or $p=2$ and V_{k} can, e.g., be
$V_{k}=\left\|x_{k}-x^{\star}\right\|_{2} \quad$ or $\quad V_{k}=f\left(x_{k}\right)+g\left(x_{k}\right)-p^{\star} \quad$ or $\quad V_{k}=\left\|\nabla f\left(x_{k}\right)\right\|_{2}$

- Can prove by starting with V_{k+1} (or V_{k+1}^{2}) and continue using
- function class inequalities
- algorithm equalities
- propeties of norms
- ...

Sublinear convergence - Lyapunov inequality

- Assume we want to show sublinear convergence of some $R_{k} \geq 0$
- This typically requires finding a Lyapunov inequality:

$$
V_{k+1} \leq V_{k}+W_{k}-R_{k}
$$

where

- $\left(V_{k}\right)_{k \in \mathbb{N}},\left(W_{k}\right)_{k \in \mathbb{N}}$, and $\left(R_{k}\right)_{k \in \mathbb{N}}$ are nonnegative real numbers
- $\left(W_{k}\right)_{k \in \mathbb{N}}$ is summable, i.e., $W:=\sum_{k=1}^{\infty} W_{k}<\infty$
- Such a Lyapunov inequality can be found by using
- function class inequalities
- algorithm equalities
- propeties of norms
- ...

Lyapunov inequality consequences

- From the Lyapunov inequality:

$$
V_{k+1} \leq V_{k}+W_{k}-R_{k}
$$

we can conclude that

- V_{k} is nonincreasing if all $W_{k}=0$
- V_{k} converges as $k \rightarrow \infty$ (will not prove)
- Recursively applying the inequality for $l \in\{k, \ldots, 0\}$ gives

$$
V_{k+1} \leq V_{0}+\sum_{l=0}^{k} W_{l}-\sum_{l=0}^{k} R_{l} \leq V_{0}+\bar{W}-\sum_{l=0}^{k} R_{l}
$$

where \bar{W} is infinite sum of W_{k}, this implies

$$
\sum_{l=0}^{k} R_{l} \leq V_{0}-V_{k+1}+\sum_{l=0}^{k} W_{l} \leq V_{0}+\sum_{l=0}^{k} W_{l} \leq V_{0}+\bar{W}
$$

from which we can

- conclude that $R_{k} \rightarrow 0$ as $k \rightarrow \infty$ since $R_{k} \geq 0$
- derive sublinear rates of convergence for R_{k} towards 0

Concluding sublinear convergence

- Lyapunov inequality consequence restated

$$
\sum_{l=0}^{k} R_{l} \leq V_{0}+\sum_{l=0}^{k} W_{l} \leq V_{0}+\bar{W}
$$

- We can derive sublinear convergence for
- Best $R_{k}:(k+1) \min _{l \in\{0, \ldots, k\}} R_{l} \leq \sum_{l=0}^{k} R_{l}$
- Last R_{k} (if R_{k} decreasing): $(k+1) R_{k} \leq \sum_{l=0}^{k} R_{l}$
- Average $R_{k}: \bar{R}_{k}=\frac{1}{k+1} \sum_{l=0}^{k} R_{l}$
- Let \hat{R}_{k} be any of these quantities, and we have

$$
\hat{R}_{k} \leq \frac{\sum_{l=0}^{k} R_{l}}{k+1} \leq \frac{V_{0}+\bar{W}}{k+1}
$$

which shows a $O(1 / k)$ sublinear convergence

Deriving other than $O(1 / k)$ convergence (1/3)

- Other rates can be derived from a modified Lyapunov inequality:

$$
V_{k+1} \leq V_{k}+W_{k}-\lambda_{k} R_{k}
$$

with $\lambda_{k}>0$ when we are interested in convergence of R_{k}, then

$$
\sum_{l=0}^{k} \lambda_{l} R_{l} \leq V_{0}+\sum_{l=0}^{k} W_{l} \leq V_{0}+\bar{W}
$$

- To have $R_{k} \rightarrow 0$ as $k \rightarrow \infty$ we need $\sum_{l=0}^{\infty} \lambda_{l}=\infty$

Deriving other than $O(1 / k)$ convergence (2/3)

- Restating the consequence: $\sum_{l=0}^{k} \lambda_{l} R_{l} \leq V_{0}+\bar{W}$
- We can derive sublinear convergence for
- Best $R_{k}: \min _{l \in\{0, \ldots, k\}} R_{l} \sum_{l=0}^{k} \lambda_{l} \leq \sum_{l=0}^{k} \lambda_{l} R_{l}$
- Last R_{k} (if R_{k} decreasing): $R_{k} \sum_{l=0}^{k} \lambda_{l} \leq \sum_{l=0}^{k} \lambda_{l} R_{l}$
- Weighted average $R_{k}: \bar{R}_{k}=\frac{1}{\sum_{l=0}^{k} \lambda_{l}} \sum_{l=0}^{k} \lambda_{l} R_{l}$
- Let \hat{R}_{k} be any of these quantities, and we have

$$
\hat{R}_{k} \leq \frac{\sum_{l=0}^{k} R_{l}}{\sum_{l=0}^{k} \lambda_{l}} \leq \frac{V_{0}+\bar{W}}{\sum_{l=0}^{k} \lambda_{l}}
$$

Deriving other than $O(1 / k)$ convergence (3/3)

- How to get a rate out of:

$$
\hat{R}_{k} \leq \frac{V_{0}+\bar{W}}{\sum_{l=0}^{k} \lambda_{l}}
$$

- Assume $\psi(k) \leq \sum_{l=0}^{k} \lambda_{l}$, then $\psi(k)$ decides rate:

$$
\hat{R}_{k} \leq \frac{\sum_{l=0}^{k} R_{l}}{\sum_{l=0}^{k} \lambda_{l}} \leq \frac{V_{0}+\bar{W}}{\psi(k)}
$$

which gives a $O\left(\frac{1}{\psi(k)}\right)$ rate

- If $\lambda_{k}=c$ is constant: $\psi(k)=c(k+1)$ and we have $O(1 / k)$ rate
- If λ_{k} is decreasing: slower rate than $O(1 / k)$
- If λ_{k} is increasing: faster rate than $O(1 / k)$

Estimating ψ via integrals

- Assume that $\lambda_{k}=\phi(k)$, then $\psi(k) \leq \sum_{l=0}^{k} \phi(l)$ and

$$
\hat{R}_{k} \leq \frac{\sum_{l=0}^{k} R_{l}}{\sum_{l=0}^{k} \phi(l)} \leq \frac{V_{0}+\bar{W}}{\psi(k)}
$$

- To estimate ψ, we use the integral inequalities
- for decreasing nonnegative ϕ :

$$
\int_{t=0}^{k} \phi(t) d t+\phi(k) \leq \sum_{l=0}^{k} \phi(l) \leq \int_{t=0}^{k} \phi(t) d t+\phi(0)
$$

- for increasing nonnegative ϕ :

$$
\int_{t=0}^{k} \phi(t) d t+\phi(0) \leq \sum_{l=0}^{k} \phi(l) \leq \int_{t=0}^{k} \phi(t) d t+\phi(k)
$$

- Remove $\phi(k), \phi(0) \geq 0$ from the lower bounds and use estimate:

$$
\psi(k)=\int_{t=0}^{k} \phi(t) d t \leq \sum_{l=0}^{k} \phi(l)
$$

Sublinear rate examples

- For Lyapunov inequality $V_{k+1} \leq V_{k}+W_{k}-\lambda_{k} R_{k}$, we get:

$$
\hat{R}_{k} \leq \frac{V_{0}+\bar{W}}{\psi(k)} \quad \text { where } \quad \lambda_{k}=\phi(k) \text { and } \psi(k)=\int_{t=0}^{k} \phi(t) d t
$$

- Let us quantify the rate ψ in a few examples:
- Two examples that are slower than $O(1 / k)$:
- $\lambda_{k}=\phi(k)=c /(k+1)$ gives slow $O\left(\frac{1}{\log k}\right)$ rate:

$$
\psi(k)=\int_{t=0}^{k} \frac{c}{t+1} d t=c[\log (t+1)]_{t=0}^{k}=c \log (k+1)
$$

- $\lambda_{k}=\phi(k)=c /(k+1)^{\alpha}$ for $\alpha \in(0,1)$, gives faster $O\left(\frac{1}{k^{1-\alpha}}\right)$ rate:

$$
\psi(k)=\int_{t=0}^{k} \frac{c}{(t+1)^{\alpha}} d t=c\left[\frac{(t+1)^{1-\alpha}}{(1-\alpha)}\right]_{t=0}^{k}=\frac{c}{1-\alpha}\left((k+1)^{1-\alpha}-1\right)
$$

- An example that is faster than $O(1 / k)$
- $\lambda_{k}=\phi(k)=c(k+1)$ gives $O\left(\frac{1}{k^{2}}\right)$ rate:

$$
\psi(k)=\int_{t=0}^{k} c(t+1) d t=c\left[\frac{1}{2}(t+1)^{2}\right]_{t=0}^{k}=\frac{c}{2}\left((k+1)^{2}-1\right)
$$

Stochastic setting and law of total expectation

- In the stochastic setting, we analyze the stochastic process

$$
x_{k+1}=\mathcal{A}_{k}\left(\xi_{k}\right) x_{k}
$$

- We will look for inequalities of the form

$$
\mathbb{E}\left[V_{k+1} \mid x_{k}\right] \leq \mathbb{E}\left[V_{k} \mid x_{k}\right]+\mathbb{E}\left[W_{k} \mid x_{k}\right]-\mathbb{E}\left[R_{k} \mid x_{k}\right]
$$

to see what happens in one step given x_{k} (but not given ξ_{k})

- We use law of total expectation $\mathbb{E}[\mathbb{E}[X \mid Y]]=\mathbb{E}[X]$ to get

$$
\mathbb{E}\left[V_{k+1}\right] \leq \mathbb{E}\left[V_{k}\right]+\mathbb{E}\left[W_{k}\right]-\mathbb{E}\left[R_{k}\right]
$$

which is a Lyapunov inequality

- We can draw rate conclusions, as we did before, now for $\mathbb{E}\left[R_{k}\right]$

Stochastic gradient descent

Proximal gradient method

- Proximal gradient method solves problems of the form

$$
\underset{x}{\operatorname{minimize}} f(x)+g(x)
$$

where (at least in our analysis)

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is β-smooth (not necessarily convex)
- $g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is closed convex
- For large problems, gradient is expensive to compute \Rightarrow replace by unbiased stochastic approximation of gradient

Unbiased stochastic gradient approximation

- Stochastic gradient:
- estimator $\hat{\nabla} f(x)$ outputs \mathbb{R}^{n}-valued random variable
- realization $\widetilde{\nabla} f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ outputs a realization in \mathbb{R}^{n}
- An unbiased stochastic gradient approximator $\hat{\nabla} f$ satisfies

$$
\mathbb{E} \widehat{\nabla} f(x)=\nabla f(x)
$$

- If x is random variable (as in SGD) an unbiased estimator satisfies

$$
\mathbb{E}[\widehat{\nabla} f(x) \mid x]=\nabla f(x)
$$

Stochastic gradient descent (SGD)

- Consider SGD for solving minimize ${ }_{x} f(x)$
- The following iteration generates $\left(x_{k}\right)_{k \in \mathbb{N}}$ of random variables:

$$
x_{k+1}=x_{k}-\gamma_{k} \widehat{\nabla} f\left(x_{k}\right)
$$

since $\hat{\nabla} f$ outputs random \mathbb{R}^{n}-valued variables

- Stochastic gradient descent finds a realization of this sequence:

$$
x_{k+1}=x_{k}-\gamma_{k} \widetilde{\nabla} f\left(x_{k}\right)
$$

where $\left(x_{k}\right)_{k \in \mathbb{N}}$ here is a realization which is different every time

- Sloppy in notation for when x_{k} is random variable vs realization
- Can be efficient if realizations $\widetilde{\nabla} f$ much cheaper than ∇f

Stochastic gradients - Finite sum problems

- Consider finite sum problems of the form

$$
\underset{x}{\operatorname{minimize}} \underbrace{\frac{1}{N}\left(\sum_{i=1}^{N} f_{i}(x)\right)}_{f(x)}
$$

where ($\frac{1}{N}$ is for convenience and)

- all $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are β_{i}-smooth (not necessarily convex)
- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is β-smooth (not necessarily convex)
- Training problems of this form, where sum over training data
- Stochastic gradient: select f_{i} at random and take gradient step

Single function stochastic gradient

- Let I be a $\{1, \ldots, N\}$-valued random variable
- Let, as before, $\widehat{\nabla} f$ denote the stochastic gradient estimator
- Realization: let i be drawn from probability distribution of I

$$
\widetilde{\nabla} f(x)=\nabla f_{i}(x)
$$

where we will use uniform probability distribution

$$
p_{i}=p(I=i)=\frac{1}{N}
$$

- Stochastic gradient is unbiased:

$$
\mathbb{E}[\widehat{\nabla} f(x) \mid x]=\sum_{i=1}^{N} p_{i} \nabla f_{i}(x)=\frac{1}{N} \sum_{i=1}^{N} \nabla f_{i}(x)=\nabla f(x)
$$

Mini-batch stochastic gradient

- Let \mathcal{B} be set of K-sample mini-batches to choose from:
- Example: 2-sample mini-batches and $N=4$:

$$
\mathcal{B}=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}
$$

- Number of mini batches $\binom{N}{K}$, each item in $\binom{N-1}{K-1}$ batches
- Let \mathbb{B} be \mathcal{B}-valued random variable
- Let, as before, $\widehat{\nabla} f$ denote stochastic gradient estimator
- Realization: let B be drawn from probability distribution of \mathbb{B}

$$
\widetilde{\nabla} f(x)=\frac{1}{K} \sum_{i \in B} \nabla f_{i}(x)
$$

where we will use uniform probability distribution

$$
p_{B}=p(\mathbb{B}=B)=\frac{1}{|\mathcal{B}|}
$$

- Stochastic gradient is unbiased:

$$
\mathbb{E} \widehat{\nabla} f(x)=\frac{1}{\binom{N}{K}} \sum_{B \in \mathcal{B}} \frac{1}{K} \sum_{i \in B} \nabla f_{i}(x)=\frac{\binom{N-1}{K-1}}{\binom{N}{K} K} \sum_{i=1}^{N} \nabla f_{i}(x)=\frac{1}{N} \sum_{i=1}^{N} \nabla f_{i}(x)=\nabla f(x)
$$

Stochastic gradient descent for finite sum problems

- The algorithm, choose $x_{0} \in \mathbb{R}^{n}$ and iterate:

1. Sample a mini-batch $B_{k} \in \mathcal{B}$ of indices uniformly (prob. $\frac{1}{|\mathcal{B}|}$)
2. Run

$$
x_{k+1}=x_{k}-\frac{\gamma_{k}}{\left|B_{k}\right|} \sum_{j \in B_{k}} \nabla f_{j}\left(x_{k}\right)
$$

- Of course, can have $\mathcal{B}=\{1, \ldots, N\}$ and sample only one function
- Gives realization of underlying stochastic process
- How about convergence?

SGD - Example

- Let $c_{1}+c_{2}+c_{3}=0$
- Solve minimize ${ }_{x}\left(\frac{1}{2}\left(\left\|x-c_{1}\right\|_{2}^{2}+\left\|x-c_{2}\right\|_{2}^{2}+\left\|x-c_{3}\right\|_{2}^{2}\right)=\frac{3}{2}\|x\|_{2}^{2}+c\right.$
- Stochastic gradient method with $\gamma_{k}=1 / 3$

Levelsets of summands

Levelset of sum

SGD - Example

- Let $c_{1}+c_{2}+c_{3}=0$
- Solve minimize ${ }_{x}\left(\frac{1}{2}\left(\left\|x-c_{1}\right\|_{2}^{2}+\left\|x-c_{2}\right\|_{2}^{2}+\left\|x-c_{3}\right\|_{2}^{2}\right)=\frac{3}{2}\|x\|_{2}^{2}+c\right.$
- Stochastic gradient method with $\gamma_{k}=1 / k$

Levelsets of summands

Levelset of sum

SGD - Example

- Let $c_{1}+c_{2}+c_{3}=0$
- Solve minimize ${ }_{x}\left(\frac{1}{2}\left(\left\|x-c_{1}\right\|_{2}^{2}+\left\|x-c_{2}\right\|_{2}^{2}+\left\|x-c_{3}\right\|_{2}^{2}\right)=\frac{3}{2}\|x\|_{2}^{2}+c\right.$
- Gradient method with $\gamma_{k}=1 / 3$

Levelsets of summands

Levelset of sum

- SGD will not converge for constant steps (unlike gradient method)

Fixed step-size SGD does not converge to solution

- We can at most hope for finding point \bar{x} such that

$$
0=\nabla f(\bar{x})
$$

i.e., the proximal gradient fixed-point characterization

- Assume x_{k} such that $0=\nabla f\left(x_{k}\right)$
- That $0=\nabla f\left(x_{k}\right)$ does not imply $0=\nabla f_{i}\left(x_{k}\right)$ for all f_{i}, hence

$$
x_{k+1}=x_{k}-\gamma_{k} \nabla f_{i}\left(x_{k}\right) \neq x_{k}
$$

i.e., will move away from prox-grad fixed-point for fixed $\gamma_{k}>0$

- Need diminishing step-size rule to hope for convergence

Polyak-Ruppert averaging

- Polyak-Ruppert averaging:
- Output average of iterations instead of last iteration
- Example: SGD with constant steps and its average sequence

SGD with constant step-size

Average of SGD sequence

Nonconvex setting - Assumptions

- We consider problems of the form

$$
\text { minimize } f(x)
$$

- Assumptions:
(i) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is β-smooth, for all $x, y \in \mathbb{R}^{n}$:

$$
f(y) \leq f(x)+\nabla f(x)^{T}(y-x)+\frac{\beta}{2}\|y-x\|_{2}^{2}
$$

(ii) Stochastic gradient of f is unbiased: $\mathbb{E}[\hat{\nabla} f(x) \mid x]=\nabla f(x)$
(iii) Variance is bounded: $\mathbb{E}\left[\|\widehat{\nabla} f(x)\|_{2}^{2} \mid x\right] \leq\|\nabla f(x)\|_{2}^{2}+M^{2}$
(iv) No nonsmooth term, i.e., $g=0$
(v) A minimizer exists and $p^{\star}=\min _{x} f(x)$ is optimal value
(vi) Step-sizes satisfy $\sum_{k=1}^{\infty} \gamma_{k}=\infty$ and $\sum_{k=1}^{\infty} \gamma_{k}^{2}<\infty$

- Comments:
- (iii): variance is bounded by M^{2} since

$$
\begin{aligned}
\mathbb{E}\left[\|\widehat{\nabla} f(x)\|_{2}^{2} \mid x\right] & =\operatorname{Var}\left[\|\widehat{\nabla} f(x)\|_{2} \mid x\right]+\|\mathbb{E}[\widehat{\nabla} f(x) \mid x]\|_{2}^{2} \\
& =\operatorname{Var}\left[\|\widehat{\nabla} f(x)\|_{2} \mid x\right]+\|\nabla f(x)\|_{2}^{2}
\end{aligned}
$$

- (iii): analysis is slightly simpler if assuming $\mathbb{E}\left[\left|\widehat{\nabla} f(x) \|_{2}^{2}\right| x\right] \leq G$

Nonconvex setting - Analysis

- Upper bound on f in Assumption (i) gives

$$
\begin{aligned}
& \mathbb{E}\left[f\left(x_{k+1}\right) \mid x_{k}\right] \\
& \quad \leq \mathbb{E}\left[\left.f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{T}\left(x_{k+1}-x_{k}\right)+\frac{\beta}{2}\left\|x_{k+1}-x_{k}\right\|_{2}^{2} \right\rvert\, x_{k}\right] \\
& \quad=f\left(x_{k}\right)-\gamma_{k} \nabla f\left(x_{k}\right)^{T} \mathbb{E}\left[\widehat{\nabla} f\left(x_{k}\right) \mid x_{k}\right]+\frac{\beta \gamma_{k}^{2}}{2} \mathbb{E}\left[\left\|\widehat{\nabla} f\left(x_{k}\right)\right\|_{2}^{2} \mid x_{k}\right] \\
& \quad \leq f\left(x_{k}\right)-\gamma_{k} \nabla f\left(x_{k}\right)^{T} \nabla f\left(x_{k}\right)+\frac{\beta \gamma_{k}^{2}}{2}\left(\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}+M^{2}\right) \\
& \quad=f\left(x_{k}\right)-\gamma_{k}\left(1-\frac{\beta \gamma_{k}}{2}\right)\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}+\frac{\beta \gamma_{k}^{2}}{2} M^{2}
\end{aligned}
$$

- Let $\gamma_{k} \leq \frac{1}{\beta}$ (true for large enough k since γ_{k} summable):

$$
\mathbb{E}\left[f\left(x_{k+1}\right) \mid x_{k}\right] \leq f\left(x_{k}\right)-\frac{\gamma_{k}}{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}+\frac{\beta \gamma_{k}^{2}}{2} M^{2}
$$

- Subtracting p^{\star} from both sides gives

$$
\mathbb{E}\left[f\left(x_{k+1}\right) \mid x_{k}\right]-p^{\star} \leq f\left(x_{k}\right)-p^{\star}-\frac{\gamma_{k}}{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}+\frac{\beta \gamma_{k}^{2}}{2} M^{2}
$$

Total expectation

- Taking total expectation gives Lyapunov inequality

$$
\underbrace{\mathbb{E}\left[f\left(x_{k+1}\right)\right]-p^{\star}}_{V_{k+1}} \leq \underbrace{\mathbb{E}\left[f\left(x_{k}\right)\right]-p^{\star}}_{V_{k}}-\underbrace{\frac{\gamma_{k}}{2} \mathbb{E}\left[\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}\right]}_{R_{k}}+\underbrace{\frac{\beta \gamma_{k}^{2}}{2} M^{2}}_{W_{k}}
$$

- Consequences:
- $V_{k}=\mathbb{E}\left[f\left(x_{k}\right)\right]-p^{\star}$ converges (not necessarily to 0)
- $\sum_{l=0}^{k} R_{l} \leq V_{0}+\sum_{l=0}^{k} W_{k}$, which, when multiplied by 2 gives

$$
\sum_{l=0}^{k} \gamma_{l} \mathbb{E}\left[\left\|\nabla f\left(x_{l}\right)\right\|_{2}^{2}\right] \leq 2\left(f\left(x_{0}\right)-p^{\star}\right)+\sum_{l=1}^{k} \gamma_{l}^{2} \beta M^{2}
$$

Minimum gradient bound tradeoff

- The Lyapunov inequality tells us that

$$
\sum_{l=0}^{k} \gamma_{l} \mathbb{E}\left[\left\|\nabla f\left(x_{l}\right)\right\|_{2}^{2}\right] \leq 2\left(f\left(x_{0}\right)-p^{\star}\right)+\sum_{l=1}^{k} \gamma_{l}^{2} \beta M^{2}
$$

- Using that

$$
\min _{l=0, \ldots, k} \mathbb{E}\left[\left\|\nabla f\left(x_{l}\right)\right\|_{2}^{2}\right] \sum_{l=0}^{k} \gamma_{l} \leq \sum_{l=0}^{k} \gamma_{l} \mathbb{E}\left[\left\|\nabla f\left(x_{l}\right)\right\|_{2}^{2}\right]
$$

we conclude that the minimum gradient norm satisfies

$$
\min _{l=0, \ldots, k} \mathbb{E}\left[\left\|\nabla f\left(x_{l}\right)\right\|_{2}^{2}\right] \leq \frac{2\left(f\left(x_{0}\right)-p^{\star}\right)+\sum_{l=0}^{k} \gamma_{l}^{2} \beta M^{2}}{\sum_{l=0}^{k} \gamma_{l}}
$$

where terms in the numerator:

- $2\left(f\left(x_{0}\right)-p^{\star}\right)$ is due to initial suboptimality
- $\sum_{l=0}^{k} \gamma_{l}^{2} \beta M^{2}$ is due to noise in gradient estimates (if $M=0$, use $\gamma_{k}=\frac{1}{\beta}$ to recover (proximal) gradient bound)

Minimum gradient convergence

- What conclusions can we draw from

$$
\min _{l=0, \ldots, k} \mathbb{E}\left[\left\|\nabla f\left(x_{l}\right)\right\|_{2}^{2}\right] \leq \frac{2\left(f\left(x_{0}\right)-p^{\star}\right)+\sum_{l=0}^{k} \gamma_{l}^{2} \beta M^{2}}{\sum_{l=0}^{k} \gamma_{l}}
$$

- Let $C=\sum_{l=0}^{\infty} \gamma_{l}^{2}<\infty$ (finite since $\left(\gamma_{k}^{2}\right)_{k \in \mathbb{N}}$ summable) then

$$
\min _{l=0, \ldots, k} \mathbb{E}\left[\left\|\nabla f\left(x_{l}\right)\right\|_{2}^{2}\right] \leq \frac{2\left(f\left(x_{0}\right)-p^{\star}\right)+C \beta M^{2}}{\sum_{l=0}^{k} \gamma_{l}} \rightarrow 0
$$

as $k \rightarrow \infty$ since $\left(\gamma_{k}\right)_{k \in \mathbb{N}}$ is not summable

- Consequences:
- Smallest expected value of gradient norm square converges to 0
- We don't know what happens with latest expected value
- Gradient converges to 0 for algorithm realizations almost surely

Convexity and strong convexity

- If we in addition assume convexity, we can show

$$
R_{k} \leq \frac{\left\|x_{0}-x^{\star}\right\|_{2}^{2}+\sum_{l=0}^{k} \gamma_{l}^{2} M^{2}}{2 \sum_{l=0}^{k} \gamma_{l}}
$$

where
$R_{k}=\min _{l=0, \ldots, k} \mathbb{E}\left[f\left(x_{k}\right)-f\left(x^{\star}\right)\right] \quad$ or $\quad R_{k}=\mathbb{E}\left[f\left(\bar{x}_{k}\right)-f\left(x^{\star}\right)\right]$
and \bar{x}_{k} is an average of previous iterates

- Smallest or average function value converges to $f\left(x^{\star}\right)$
- in expectation
- for algorithm realizations with probility 1
- no last iterate convergence bound
- Assumption: f smooth and strongly convex
- Proximal gradient method achieves linear convergence
- Stochastic gradient descent does not achieve linear convergence

Convergence results

- Convergence in nonconvex and convex settings are:

$$
R_{k} \leq \frac{V_{0}+D \sum_{l=0}^{k} \gamma_{l}^{2}}{b \sum_{l=0}^{k} \gamma_{l}}
$$

for different V_{0}, D, and b and R_{k}

- Same dependance on step-size
- What step-sizes can we use and have convergence?

Step-size requirements

- We shift indices k and l by one to start algorithm with $k=1$
- Step-sizes: $\sum_{l=1}^{\infty} \gamma_{l}^{2}<\infty$ and $\sum_{l=1}^{\infty} \gamma_{l}=\infty$ make upper bound

$$
R_{k} \leq \frac{V_{1}+D \sum_{l=1}^{k} \gamma_{l}^{2}}{b \sum_{l=1}^{k} \gamma_{l}} \rightarrow 0
$$

as $k \rightarrow \infty$

- Step-size choices that satisfy assumptions:
- $\gamma_{k}=c / k$ for some $c>0$
- $\gamma_{k}=c / k^{\alpha}$ for $\alpha \in(0.5,1)$

Estimating rates via integrals

- For convergence need to verify $\sum_{l=1}^{\infty} \gamma_{l}=\infty$ and $\sum_{l=1}^{\infty} \gamma_{l}^{2}<\infty$
- To estimate rates we need to estimate $\sum_{l=1}^{k} \gamma_{l}$ and $\sum_{l=1}^{k} \gamma_{l}^{2}$
- Assume $\gamma_{l}=\phi(l)$ with decreasing and nonnegative $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$
- Then we can estimate using integrals

$$
\int_{t=1}^{k} \phi(t) d t+\phi(k) \leq \sum_{l=1}^{k} \phi(l) \leq \int_{t=1}^{k} \phi(t) d t+\phi(1)
$$

- We can also remove $\phi(k)$ from lower bound to simplify

Estimating rates - Example $\gamma_{k}=c / k$

- Let $\gamma_{k}=\phi(k)$ with $\phi(k)=c / k$ and estimate the sum

$$
\sum_{l=1}^{k} \gamma_{l} \geq \int_{t=1}^{k} \frac{c}{t} d t=c[\log (t)]_{t=1}^{k}=c \log (k)
$$

(which diverges as $k \rightarrow \infty$ as required) and the finite sum

$$
\sum_{l=1}^{k} \gamma_{l}^{2} \leq \int_{t=1}^{k} \frac{c^{2}}{t^{2}} d t+\phi(1)^{2}=c^{2}[-1 / t]_{t=1}^{k}+c^{2}=c^{2}(2-1 / k) \leq 2 c^{2}
$$

- We use these to arrive at the following rate when $\gamma_{k}=c / k$:

$$
R_{k} \leq \frac{V_{1}+D \sum_{l=1}^{k} \gamma_{l}^{2}}{b \sum_{l=1}^{k} \gamma_{l}} \leq \frac{V_{1}+2 D c^{2}}{b c \log k}=\frac{V_{1} / c+2 D c}{b \log k}
$$

so we have $O(1 / \log k)$ convergence, which is slow

- The constant c trades off the two constant terms V_{1} and D

Estimating rates - Example $\gamma_{k}=c / k^{\alpha}$

- Let $\gamma_{k}=\phi(k)$ with $\phi(k)=c / k^{\alpha}$ and $\alpha \in(0.5,1)$ and estimate

$$
\sum_{l=1}^{k} \gamma_{l} \geq \int_{t=1}^{k} \frac{c}{t^{\alpha}} d t=c\left[\frac{t^{1-\alpha}}{1-\alpha}\right]_{t=1}^{k}=\frac{c}{1-\alpha}\left(k^{1-\alpha}-1\right)
$$

(which diverges as $k \rightarrow \infty$ since slower than $1 / k$) and the sum

$$
\sum_{l=1}^{k} \gamma_{l}^{2} \leq \int_{t=1}^{k} \frac{c^{2}}{t^{2 \alpha}} d t+\phi(1)^{2}=c^{2}\left[\frac{t^{1-2 \alpha}}{1-2 \alpha}\right]_{t=1}^{k}+c^{2} \leq \frac{c^{2}}{2 \alpha-1}+c^{2}=: c^{2} C
$$

where the last inequality holds since $\alpha>0.5$

- We use these to arrive at the following rate when $\gamma_{k}=c / k^{\alpha}$.

$$
R_{k} \leq \frac{V_{1}+D \sum_{l=1}^{k} \gamma_{l}^{2}}{b \sum_{l=1}^{k} \gamma_{l}} \leq \frac{(1-\alpha)\left(V_{1} / c+D C c\right)}{b\left(k^{1-\alpha}-1\right)}
$$

so we have $O\left(1 / k^{1-\alpha}\right)$ rate with $\alpha \in(0.5,1)$

- Rate improves with smaller α and $1 / k^{1-\alpha} \rightarrow \sqrt{k}$ as $\alpha \rightarrow 0.5$

Refining the step-size analysis

- Have not assumed $\sum_{l=1}^{\infty} \gamma_{l}^{2}$ finite for general convergence bound

$$
R_{k} \leq \frac{V_{1}+D \sum_{l=1}^{k} \gamma_{l}^{2}}{b \sum_{l=1}^{k} \gamma_{l}}
$$

- We can divide the sum into two parts

$$
R_{k} \leq \frac{V_{1}}{b \sum_{l=1}^{k} \gamma_{l}}+\frac{D}{b \frac{\sum_{l=1}^{k} \gamma_{l}}{\sum_{l=1}^{k} \gamma_{l}^{2}}}
$$

- So $R_{k} \rightarrow 0$ if $\sum_{l=1}^{k} \gamma_{l} \rightarrow \infty$ and $\frac{\sum_{l=1}^{k} \gamma_{l}}{\sum_{l=1}^{k} \gamma_{l}^{2}} \rightarrow \infty$ (don't need $\sum_{l=1}^{k} \gamma_{l}^{2}<\infty$ for $R_{k} \rightarrow 0$)

Refined step-size analysis interpretation

- Let $\psi_{1}(k)=\sum_{l=1}^{k} \gamma_{l}$ and $\psi_{2}(k)=\frac{\sum_{l=1}^{k} \gamma_{l}}{\sum_{l=1}^{k} \gamma_{l}^{2}}$ and restate bound:

$$
R_{k} \leq \frac{V_{1}}{b \psi_{1}(k)}+\frac{D}{b \psi_{2}(k)}
$$

- ψ_{1} decides how fast $V_{1}\left(f\left(x_{k}\right)-p^{\star}\right.$ or $\left.\left\|x_{k}-x^{\star}\right\|_{2}\right)$ is supressed
- ψ_{2} decides how fast D is supressed, where D can be
- G^{2} if assumption $\mathbb{E}\left[\|\widehat{\nabla} f(x)\|_{2}^{2} \mid x\right] \leq G^{2}$
- M^{2} if assumption $\mathbb{E}\left[\|\widehat{\nabla} f(x)\|_{2}^{2} \mid x\right] \leq\|\nabla f(x)\|_{2}^{2}+M^{2}$
- There is a tradeoff between supressing these quantities
- For previous step-size choices, ψ_{1} is slower
- Will present step-sizes where ψ_{2} is slower
- Actual convergence very much dependent on constants V_{1} and D

Estimating rates - Example $\gamma_{k}=c / \sqrt{k}$

- We know from before that

$$
\sum_{l=1}^{k} \gamma_{l}=\sum_{l=1}^{k} c / k^{0.5} \geq 2 c(\sqrt{k}-1) \approx 2 c \sqrt{k}
$$

and that the sum of step-sizes does not converge, but satisfies

$$
\sum_{l=1}^{k} \gamma_{l}^{2} \leq \sum_{l=1}^{k} c^{2} / k=c^{2} \log (k)
$$

- Since $\sum_{l=1}^{k} \gamma_{l} / \sum_{l=1}^{k} \gamma_{l}^{2}$ converges, also R_{k} converges as

$$
R_{k} \leq \frac{V_{1}}{2 b c \sqrt{k}}+\frac{D c}{b \frac{\sqrt{k}}{\log k}}
$$

with rate $O(\log k / \sqrt{k})$

Estimating rates - Example $\gamma_{k}=c / k^{\alpha}$

- Let now $\alpha \in(0,0.5)$ for which γ_{k} is not square summable
- We know form before that

$$
\sum_{l=1}^{k} \gamma_{l} \geq \frac{c}{1-\alpha}\left(k^{1-\alpha}-1\right)
$$

and the squared sum does not converge, but satisfies

$$
\sum_{l=1}^{k} \gamma_{l}^{2} \leq c^{2}\left[\frac{t^{1-2 \alpha}}{1-2 \alpha}\right]_{t=1}^{k}+c^{2}=\frac{c^{2}}{1-2 \alpha}\left(k^{1-2 \alpha}-1\right)+c^{2}=\frac{c^{2}}{1-2 \alpha}\left(k^{1-2 \alpha}-2 \alpha\right)
$$

- We use these to arrive at the following rate when $\gamma_{k}=c / k^{\alpha}$:

$$
R_{k} \leq \frac{(1-\alpha) V_{1}}{2 b c\left(k^{1-\alpha}-1\right)}+\frac{(1-\alpha) D c}{b(1-2 \alpha) \frac{k^{1-\alpha}-1}{k^{1-2 \alpha}-2 \alpha}}
$$

with rate (ignoring constant terms) is worst of

$$
O\left(1 / k^{1-\alpha}\right) \quad \text { and } \quad O\left(1 / k^{1-\alpha} / k^{1-2 \alpha}\right)=O\left(1 / k^{\alpha}\right)
$$

which is the latter since $\alpha \in(0,0.5)$

- Rate improves with larger α and $k^{\alpha} \rightarrow \sqrt{k}$ as $\alpha \rightarrow 0.5$

How about fixed step-size

- Algorithms run in practice a finite number of iterations K
- What happens with fixed-step size scheme after K steps?
- We fix $\gamma_{k}=\bar{\gamma}=\theta / \sqrt{K}$ with $\theta>0$ to be the same for all k
- Our convergence result says:

$$
R_{K} \leq \frac{V_{1}+D \sum_{l=1}^{K} \gamma_{l}^{2}}{b \sum_{l=1}^{K} \gamma_{l}}=\frac{V_{1}+D K \bar{\gamma}^{2}}{b K \bar{\gamma}}=\frac{V_{1}+D \theta^{2}}{b \sqrt{K} \theta}
$$

- Comments:
- get \sqrt{K} convergence rate until iteration K
- but R_{k} will not converge to 0 as $k \rightarrow \infty$
- that $\gamma_{k}=\theta / \sqrt{K}$ holds for every fixed step-size for some θ
- actual convergence very much dependent on V_{1}, D, and θ

Rate comparison

Setting	Gradient	Stochastic gradient $\gamma_{k}=1 / k^{\alpha}$			
		$\alpha=1$	$\alpha \in(0,5,1)$	$\alpha=0.5$	$\alpha \in(0,0.5)$
Nonconvex	$O\left(\frac{1}{k}\right)$	$O\left(\frac{1}{\log k}\right)$	$O\left(\frac{1}{k^{1-\alpha}}\right)$	$O\left(\frac{\log k}{\sqrt{k}}\right)$	$O\left(\frac{1}{k^{\alpha}}\right)$
Convex	$O\left(\frac{1}{k}\right)$	$O\left(\frac{1}{\log k}\right)$	$O\left(\frac{1}{k^{1-\alpha}}\right)$	$O\left(\frac{\log k}{\sqrt{k}}\right)$	$O\left(\frac{1}{k^{\alpha}}\right)$
Strongly convex	linear	sublinear	sublinear	sublinear	sublinear

- Stochastic gradient descent slower in all settings
- However, every iteration in stochastic gradient descent cheaper

Finite sum comparison

- We consider

$$
\operatorname{minimize} \sum_{i=1}^{N} f_{i}(x)
$$

where N is large and use one f_{i} for each stochastic gradient

- N iterations of stochastic gradient is at cost of 1 full gradient
- Progress after k epochs (stochastic) vs k iterations (full):

Setting	Gradient	Stochastic gradient $\gamma_{k}=1 / k^{\alpha}$			
		$\alpha=1$	$\alpha \in(0,5,1)$	$\alpha=0.5$	$\alpha \in(0,0.5)$
Nonconvex	$O\left(\frac{1}{k}\right)$	$O\left(\frac{1}{\log N k}\right)$	$O\left(\frac{1}{(N k)^{1-\alpha}}\right)$	$O\left(\frac{\log N k}{\sqrt{N k}}\right)$	$O\left(\frac{1}{(N k)^{\alpha}}\right)$
Convex	$O\left(\frac{1}{k}\right)$	$O\left(\frac{1}{\log N k}\right)$	$O\left(\frac{1}{(N k)^{1-\alpha}}\right)$	$O\left(\frac{\log N k}{\sqrt{N k}}\right)$	$O\left(\frac{1}{(N k)^{\alpha}}\right)$

Finite sum comparison - Quantification

- Assume that finite sum of N equals 10 million summands
- Computational budget is that we run $k=10$ iterations/epochs
- Replacing ordo expressions with numbers:

Setting	Gradient	Stochastic gradient $\gamma_{k}=1 / k^{\alpha}$			
		$\alpha=1$	$\alpha=0.75$	$\alpha=0.5$	$\alpha=0.25$
Nonconvex	0.1	0.054	0.01	0.0018	0.01
Convex	0.1	0.054	0.01	0.0018	0.01

- Stochastic gives better ordo-rates (but constants are worse)
- Significant difference within stochastic methods, $\gamma_{k}=\frac{c}{\sqrt{k}}$ best
- Actual performance depends a lot on relation between constants

Thanks for your attention

- Most slides from Optimization for Learning at Lund University https://canvas.education.lu.se/courses/7714
- Short "flipped classroom" style videos available for many topics http://www.control.lth.se/fileadmin/control/ Education/EngineeringProgram/FRTN50/VideoPlatform/

VideoLecturePlatform.html

