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Finite sum problems
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Finite sum problems

• Yesterday, you saw problems of the form

minimize f(x) + g(x)

where
• f is smooth (and potentially convex)
• g is nonsmooth and convex

• Algorithm: proximal gradient method

• Sometimes there is additional structure, we will treat

minimize

N∑
i=1

fi(x)︸ ︷︷ ︸
f(x)

where f is of finite sum form (and g ≡ 0)

• Can be solved by gradient method

• If N is large, stochastic gradient descent is often preferrable
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Why finite sum?

Finite sum problems appear naturally, e.g., in supervised learning
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What is supervised learning?

• Let (x, y) represent object and label pairs
• Object x ∈ X ⊆ Rn
• Label y ∈ Y ⊆ RK

• Available: Labeled training data (training set) {(xi, yi)}Ni=1

• Data xi ∈ Rn, or examples (often n large)
• Labels yi ∈ RK , or response variables (often K = 1)

Objective: Find a model (function) m(x):

• that takes data (example, object) x as input

• and predicts corresponding label (response variable) y

How?:

• learn m from training data, but should generalize to all (x, y)
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Relation to optimization

Training the “machine” m consists in solving optimization problem

6



Regression vs Classification

There are two main types of supervised learning tasks:

• Regression:
• Predicts quantities
• Real-valued labels y ∈ Y = RK (will mainly consider K = 1)

• Classification:
• Predicts class belonging
• Finite number of class labels, e.g., y ∈ Y = {1, 2, . . . , k}
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Regression training problem

• Objective: Find data model m such that for all (x, y):

m(x)− y ≈ 0

• Let model output u = m(x); Examples of data misfit losses

L(u, y) = 1
2 (u− y)2

L(u, y) = |u− y|

L(u, y) =

{
1
2 (u− y)2 if |u− v| ≤ c
c(|u− y| − c/2) else

u− y
Square

u− y
1-norm

u− y
Huber

• Training: find model m that minimizes sum of training set losses

minimize
m

N∑
i=1

L(m(xi), yi)
8



Supervised learning – Least squares

• Parameterize model m and set a linear (affine) structure

m(x; θ) = wTx+ b

where θ = (w, b) are parameters (also called weights)

• Training: find model parameters that minimize training cost

minimize
θ

N∑
i=1

L(m(xi; θ), yi) = 1
2

N∑
i=1

(wTxi + b− yi)2

(note: optimization over model parameters θ)

• Problem is convex in θ since L(·, y) convex and model affine

• Once trained, predict response of new input x as ŷ = wTx+ b
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Example – Least squares

• Find affine function parameters that fit data:

variable x

re
sp
o
n
se
y
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Example – Least squares

• Find affine function parameters that fit data:

variable x

re
sp
o
n
se
y

Data points (x, y) marked with ( ), LS model wx+ b ( )
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Example – Least squares

• Find affine function parameters that fit data:

variable x

re
sp
o
n
se
y

Data points (x, y) marked with ( ), LS model wx+ b ( )

Least squares finds affine function that minimizes squared distance 10



Binary classification

• Labels y = 0 or y = 1 (alternatively y = −1 or y = 1)

• Training problem

minimize
θ

N∑
i=1

L(m(xi; θ), yi)

• Design loss L to train model parameters θ such that:
• m(xi; θ) < 0 for pairs (xi, yi) where yi = 0
• m(xi; θ) > 0 for pairs (xi, yi) where yi = 1

• Predict class belonging for new data points x with trained θ∗:
• m(x; θ∗) < 0 predict class y = 0
• m(x; θ∗) > 0 predict class y = 1

objective is that this prediction is accurate on unseen data
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Logistic regression

• Logistic regression uses:
• affine parameterized model m(x; θ) = wTx+ b (where θ = (w, b))
• loss function L(u, y) = log(1 + eu)− yu (if labels y = 0, y = 1)

• Training problem, find model parameters by solving:

minimize
θ

N∑
i=1

L(m(xi; θ), yi) =

N∑
i=1

(
log(1 + ex

T
i w+b)− yi(xTi w + b)

)
• Training problem convex in θ = (w, b) since:

• model m(x; θ) is affine in θ
• loss function L(u, y) is convex in u

u

L(u,−1)

u

L(u, 1)

12



Prediction

• Use trained model m to predict label y for unseen data point x
• Since affine model m(x; θ) = wTx+ b, prediction for x becomes:

• If wTx+ b < 0, predict corresponding label y = 0
• If wTx+ b > 0, predict corresponding label y = 1
• If wTx+ b = 0, predict either y = 0 or y = 1

• A hyperplane (decision boundary) separates class predictions:

H := {x : wTx+ b = 0}
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Multiclass logistic regression

• K classes in {1, . . . ,K} and data/labels (x, y) ∈ X × Y
• Labels: y ∈ Y = {e1, . . . , eK} where {ej} coordinate basis

• Example, K = 5 class 2: y = e2 = [0, 1, 0, 0, 0]T

• Use one model per class mj(x; θj) for j ∈ {1, . . . ,K}
• Objective: Find θ = (θ1, . . . , θK) such that for all models j:

• mj(x; θj)� 0, if label y = ej and mj(x; θj)� 0 if y 6= ej

• Training problem loss function:

L(u, y) = log

 K∑
j=1

euj

− uT y
where label y is a “one-hot” basis vector, is convex in u
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Multiclass logistic regression – Training problem

• Affine data model m(x; θ) = wTx+ b with

w = [w1, . . . , wK ] ∈ Rn×K , b = [b1, . . . , bK ]T ∈ RK

• One data model per class

m(x; θ) =

 m1(x; θ1)
...

mK(x; θK)

 =

 w
T
1 x+ b1

...
wTKx+ bK


• Training problem:

minimize
θ

N∑
i=1

log

 K∑
j=1

ew
T
j xi+bj

− yT (wTxi + b)

where y is “one-hot” encoding of label

• Problem is convex since affine model is used
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Example – Linearly separable data

Problem with 7 classes
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Example – Linearly separable data

Problem with 7 classes and affine multiclass model
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Example – Quadratically separable data

Same data, new labels in 6 classes
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Example – Quadratically separable data

Same data, new labels in 6 classes, affine model
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Example – Quadratically separable data

Same data, new labels in 6 classes, quadratic model
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Features

• Used quadratic features in last example
• Same procedure as before:

• replace data vector xi with feature vector φ(xi)
• run classification method with feature vectors as inputs

• Model still affine in parameters, training problem still convex

m
(x
i
;θ
)

φ(xi)

w
T
φ
(x
i
)

φx
i
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Deep learning

• Can be used both for classification and regression

• Deep learning training problem is of the form

minimize
θ

N∑
i=1

L(m(xi; θ), yi)

where typically
• L(u, y) = 1

2
‖u− y‖22 is used for regression

• L(u, y) = log
(∑K

j=1 e
uj
)
− yTu is used for K-class classification

• Difference to previous convex methods: Nonlinear model m(x; θ)
• Deep learning regression generalizes least squares
• DL classification generalizes multiclass logistic regression
• Nonlinear model makes training problem nonconvex
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Deep learning – Model

• Nonlinear model of the following form is often used:

m(x; θ) := Wnσn−1(Wn−1σn−2(· · · (W2σ1(W1x+ b1) + b2) · · · ) + bn−1) + bn,

• The σj are nonlinear and called activation functions
• Composition of nonlinear (σj) and affine (Wj(·) + bj) operations
• Each σj function constitutes a hidden layer in the model network
• Graphical representation with three hidden layers

x
i

σ1(·)
σ2(·)

σ3(·)

• Why this structure?
• (Assumed) universal function approximators
• Efficient gradient computation using backpropagation (chain rule)
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Examples of activation functions

Name σ(u) Graph

Sigmoid 1
1+e−u

ReLU max(u, 0)

LeakyReLU max(u, αu)

ELU

{
u if u ≥ 0

α(eu − 1) else

SELU λ

{
u if u ≥ 0

α(eu − 1) else
21



Learning features

• Used prespecified feature maps (or Kernels) in convex methods

• Deep learning instead learns feature map during training
• Define parameter (weight) dependent feature vector:

φ(x; θ) := σn−1(Wn−1σn−2(· · · (W2σ1(W1x+b1)+b2) · · · )+bn−1)

• Model becomes m(x; θ) = Wnφ(x; θ) + bn
• Inserted into training problem:

minimize
θ

N∑
i=1

L(Wnφ(xi; θ) + bn, yi)

same as before, but with learned (parameter-dependent) features

• Learning features at training makes training nonconvex
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Learning features – Graphical representation

• Fixed features gives convex training problems

m
(x
i
;θ
)

φ(xi)

w
T
φ
(x
i
)

φx
i

• Learning features gives nonconvex training problems

m
(x
i
;θ
)

x
i

φ(xi; θ)

W
4
φ
(x
i
;θ
)

φ(·; θ)

• Output of last activation function is feature vector 23



Deep learning training problem

• Training problem:

minimize
θ

N∑
i=1

L(m(xi; θ), yi)

where typically
• L(u, y) = 1

2
‖u− y‖22 is used for regression

• L(u, y) = log
(∑K

j=1 e
uj
)
− yTu is used for K-class classification

• Model m(x; θ) is nonlinear
• Training problem becomes nonconvex
• If activation functions are smooth, training problem is smooth
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Proving convergence
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Deterministic and stochastic algorithms

• We have deterministic algorithms

xk+1 = Akxk

that given initial x0 will give the same sequence (xk)k∈N
• We will also see stochastic algorithms that iterate

xk+1 = Ak(ξk)xk

where ξk is a random variable that also decides the mapping
• (xk)k∈N is a stochastic process of random variables
• when running the algorithm, we evaluate ξk and get a realization
• different realization (xk)k∈N every time even if started at same x0

• Stochastic algorithms useful although problem is deterministic
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Types of convergence

• Let x? be solution to composite problem and p? = f(x?) + g(x?)

• We will see convergence of different quantities in different settings

• For deterministic algorithms that generate (xk)k∈N, we will see
• Sequence convergence: xk → x?

• Function value convergence: f(xk) + g(xk)→ p?

• If g = 0, gradient norm convergence: ‖∇f(xk)‖2 → 0

• Convergence is stronger as we go up the list

• First two common in convex setting, last in nonconvex
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Convergence for stochastic algorithms

• Stochastic algorithms described by stochastic process (xk)k∈N
• When algorithm is run, we get realization of stochastic process

• We analyze stochastic process and will see, e.g.,:
• Expected sequence convergence: E[‖xk − x?‖2]→ 0
• Expected function value convergence: E[f(xk) + g(xk)− p?]→ 0
• If g = 0, expected gradient norm convergence: E[‖∇f(xk)‖2]→ 0

• Says what happens with expected value of different quantities
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What happens with algorithm realizations?

• We will conclude that expected value of some quantity, e.g.,:

E[‖xk − x?‖2] or E[f(xk) + g(xk)− p?] or E[‖∇f(xk)‖2]

converges to 0, where all quantities are nonnegative

• What happens with the actual algorithm realizations?

• We can make conclusions by the following result: If
• (Zk)k∈N is a stochastic process with Zk ≥ 0
• the expected value E[Zk] converges to 0 as k →∞

then realizations converge to 0 almost surely (with probability 1)

• That expected value of nonnegative quantity goes to 0 is strong
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Convergence rates

• We have only talked about convergence, not convergence rate

• Rates indicate how fast (in iterations) algorithm reaches solution

• Typically divided into:
• Sublinear rates
• Linear rates (also called geometric rates)
• Quadratic rates (or more generally superlinear rates)

• Sublinear rates slowest, quadratic rates fastest

• Linear rates further divided into Q-linear and R-linear

• Quadratic rates further divided into Q-quadratic and R-quadratic
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Linear rates

• A Q-linear rate with factor ρ ∈ [0, 1) can be:

f(xk+1) + g(xk+1)− p? ≤ ρ(f(xk) + g(xk)− p?)
E[‖xk+1 − x?‖2] ≤ ρE[‖xk − x?‖2]

• An R-linear rate with factor ρ ∈ [0, 1) and some C > 0 can be:

‖xk − x?‖2 ≤ ρkC

this is implied by Q-linear rate and has exponential decrease

• Linear rate is superlinear if ρ = ρk and ρk → 0 as k →∞
• Examples:

• (Accelerated) proximal gradient with strongly convex cost
• Randomized coordinate descent with strongly convex cost
• BFGS has local superlinear with strongly convex cost
• but SGD with strongly convex cost gives sublinear rate
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Linear rates – Comparison

• Different rates in log-lin plot

0 200 400 600 800 1000
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ρ = 0.90

• Called linear rate since linear in log-lin plot
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Quadratic rates

• Q-quadratic rate with factor ρ ∈ [0, 1) can be:

f(xk+1) + g(xk+1)− p? ≤ ρ(f(xk) + g(xk)− p?)2

‖xk+1 − x?‖2 ≤ ρ‖x− x?‖22

• R-quadratic rate with factor ρ ∈ [0, 1) and some C > 0 can be:

‖xk − x?‖2 ≤ ρ2kC

• Quadratic (ρ2k) vs linear (ρk) rate with factor ρ = 0.9:

Quadratic
1.000000000000
0.900000000000
0.729000000000
0.478296799000
0.205891068000
0.038152029400
0.001310019380
0.000001544535
0.000000000002

Linear
1.000000000000
0.900000000000
0.810000000000
0.729000000000
0.656099945000
0.590490005000
0.531440964000
0.478296936000
0.430467270000

• Example: Locally for Newton’s method with strongly convex cost
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Quadratic rates – Comparison

• Different rates in log-lin scale
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• Quadratic convergence is superlinear
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Sublinear rates

• A rate is sublinear if it is slower than linear

• A sublinear rate can, for instance, be of the form

f(xk) + g(xk)− p? ≤ C
ψ(k)

‖xk+1 − xk‖22 ≤ C
ψ(k)

min
l=0,...,k

E[‖∇f(xl)‖22] ≤ C
ψ(k)

where C > 0 and ψ decides how fast it decreases, e.g.,
• ψ(k) = log k: Stochastic gradient descent γk = c/k
• ψ(k) =

√
k: Stochastic gradient descent: optimal γk

• ψ(k) = k: Proximal gradient, coordinate proximal gradient
• ψ(k) = k2: Accelerated proximal gradient method

with improved rate further down the list

• We say that the rate is O( 1
ψ(k) ) for the different ψ

• To be sublinear ψ has slower than exponential growth as
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Sublinear rates – Comparison

• Different rates on log-lin scale
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• Many iterations may be needed for high accuracy
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Proving convergence rates

• To prove a convergence rate typically requires
• Using inequalities that describe problem class
• Using algorithm definition equalities (or inclusions)
• Combine these to a form so that convergence can be concluded

• Linear and quadratic rates proofs conceptually straightforward

• Sublinear rates implicit via a Lyapunov inequality
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Proving linear or quadratic rates

• If we suspect linear or quadratic convergence for Vk ≥ 0:

Vk+1 ≤ ρV pk

where ρ ∈ [0, 1) and p = 1 or p = 2 and Vk can, e.g., be

Vk = ‖xk − x?‖2 or Vk = f(xk) + g(xk)− p? or Vk = ‖∇f(xk)‖2

• Can prove by starting with Vk+1 (or V 2
k+1) and continue using

• function class inequalities
• algorithm equalities
• propeties of norms
• . . .
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Sublinear convergence – Lyapunov inequality

• Assume we want to show sublinear convergence of some Rk ≥ 0

• This typically requires finding a Lyapunov inequality:

Vk+1 ≤ Vk +Wk −Rk

where
• (Vk)k∈N, (Wk)k∈N, and (Rk)k∈N are nonnegative real numbers
• (Wk)k∈N is summable, i.e., W :=

∑∞
k=1Wk <∞

• Such a Lyapunov inequality can be found by using
• function class inequalities
• algorithm equalities
• propeties of norms
• . . .
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Lyapunov inequality consequences

• From the Lyapunov inequality:

Vk+1 ≤ Vk +Wk −Rk
we can conclude that
• Vk is nonincreasing if all Wk = 0
• Vk converges as k →∞ (will not prove)

• Recursively applying the inequality for l ∈ {k, . . . , 0} gives

Vk+1 ≤ V0 +

k∑
l=0

Wl −
k∑
l=0

Rl ≤ V0 +W −
k∑
l=0

Rl

where W is infinite sum of Wk, this implies

k∑
l=0

Rl ≤ V0 − Vk+1 +

k∑
l=0

Wl ≤ V0 +

k∑
l=0

Wl ≤ V0 +W

from which we can
• conclude that Rk → 0 as k →∞ since Rk ≥ 0
• derive sublinear rates of convergence for Rk towards 0
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Concluding sublinear convergence

• Lyapunov inequality consequence restated

k∑
l=0

Rl ≤ V0 +

k∑
l=0

Wl ≤ V0 +W

• We can derive sublinear convergence for
• Best Rk: (k + 1) minl∈{0,...,k}Rl ≤

∑k
l=0Rl

• Last Rk (if Rk decreasing): (k + 1)Rk ≤
∑k
l=0Rl

• Average Rk: R̄k = 1
k+1

∑k
l=0Rl

• Let R̂k be any of these quantities, and we have

R̂k ≤
∑k
l=0Rl
k + 1

≤ V0 +W

k + 1

which shows a O(1/k) sublinear convergence
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Deriving other than O(1/k) convergence (1/3)

• Other rates can be derived from a modified Lyapunov inequality:

Vk+1 ≤ Vk +Wk − λkRk

with λk > 0 when we are interested in convergence of Rk, then

k∑
l=0

λlRl ≤ V0 +

k∑
l=0

Wl ≤ V0 +W

• To have Rk → 0 as k →∞ we need
∑∞
l=0 λl =∞
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Deriving other than O(1/k) convergence (2/3)

• Restating the consequence:
∑k
l=0 λlRl ≤ V0 +W

• We can derive sublinear convergence for
• Best Rk: minl∈{0,...,k}Rl

∑k
l=0 λl ≤

∑k
l=0 λlRl

• Last Rk (if Rk decreasing): Rk
∑k
l=0 λl ≤

∑k
l=0 λlRl

• Weighted average Rk: R̄k = 1∑k
l=0

λl

∑k
l=0 λlRl

• Let R̂k be any of these quantities, and we have

R̂k ≤
∑k
l=0Rl∑k
l=0 λl

≤ V0 +W∑k
l=0 λl
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Deriving other than O(1/k) convergence (3/3)

• How to get a rate out of:

R̂k ≤
V0 +W∑k
l=0 λl

• Assume ψ(k) ≤
∑k
l=0 λl, then ψ(k) decides rate:

R̂k ≤
∑k
l=0Rl∑k
l=0 λl

≤ V0 +W

ψ(k)

which gives a O( 1
ψ(k) ) rate

• If λk = c is constant: ψ(k) = c(k + 1) and we have O(1/k) rate
• If λk is decreasing: slower rate than O(1/k)
• If λk is increasing: faster rate than O(1/k)
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Estimating ψ via integrals

• Assume that λk = φ(k), then ψ(k) ≤
∑k
l=0 φ(l) and

R̂k ≤
∑k
l=0Rl∑k
l=0 φ(l)

≤ V0 +W

ψ(k)

• To estimate ψ, we use the integral inequalities
• for decreasing nonnegative φ:∫ k

t=0

φ(t)dt+ φ(k) ≤
k∑
l=0

φ(l) ≤
∫ k

t=0

φ(t)dt+ φ(0)

• for increasing nonnegative φ:∫ k

t=0

φ(t)dt+ φ(0) ≤
k∑
l=0

φ(l) ≤
∫ k

t=0

φ(t)dt+ φ(k)

• Remove φ(k), φ(0) ≥ 0 from the lower bounds and use estimate:

ψ(k) =

∫ k

t=0

φ(t)dt ≤
k∑
l=0

φ(l)
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Sublinear rate examples

• For Lyapunov inequality Vk+1 ≤ Vk +Wk − λkRk, we get:

R̂k ≤
V0 +W

ψ(k)
where λk = φ(k) and ψ(k) =

∫ k

t=0

φ(t)dt

• Let us quantify the rate ψ in a few examples:
• Two examples that are slower than O(1/k):

• λk = φ(k) = c/(k + 1) gives slow O( 1
log k

) rate:

ψ(k) =

∫ k

t=0

c

t+ 1
dt = c[log(t+ 1)]kt=0 = c log(k + 1)

• λk = φ(k) = c/(k+1)α for α ∈ (0, 1), gives faster O( 1
k1−α

) rate:

ψ(k) =

∫ k

t=0

c

(t+ 1)α
dt = c[

(t+1)1−α

(1−α) ]kt=0 = c
1−α ((k + 1)1−α − 1)

• An example that is faster than O(1/k)
• λk = φ(k) = c(k + 1) gives O( 1

k2
) rate:

ψ(k) =

∫ k

t=0
c(t+ 1)dt = c[ 1

2
(t+ 1)2]kt=0 = c

2
((k + 1)2 − 1)
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Stochastic setting and law of total expectation

• In the stochastic setting, we analyze the stochastic process

xk+1 = Ak(ξk)xk

• We will look for inequalities of the form

E[Vk+1|xk] ≤ E[Vk|xk] + E[Wk|xk]− E[Rk|xk]

to see what happens in one step given xk (but not given ξk)

• We use law of total expectation E[E[X|Y ]] = E[X] to get

E[Vk+1] ≤ E[Vk] + E[Wk]− E[Rk]

which is a Lyapunov inequality

• We can draw rate conclusions, as we did before, now for E[Rk]
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Stochastic gradient descent
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Proximal gradient method

• Proximal gradient method solves problems of the form

minimize
x

f(x) + g(x)

where (at least in our analysis)
• f : Rn → R is β-smooth (not necessarily convex)
• g : Rn → R ∪ {∞} is closed convex

• For large problems, gradient is expensive to compute
⇒ replace by unbiased stochastic approximation of gradient
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Unbiased stochastic gradient approximation

• Stochastic gradient:
• estimator ∇̂f(x) outputs Rn-valued random variable
• realization ∇̃f(x) : Rn → Rn outputs a realization in Rn

• An unbiased stochastic gradient approximator ∇̂f satisfies

E∇̂f(x) = ∇f(x)

• If x is random variable (as in SGD) an unbiased estimator satisfies

E[∇̂f(x)|x] = ∇f(x)
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Stochastic gradient descent (SGD)

• Consider SGD for solving minimizex f(x)

• The following iteration generates (xk)k∈N of random variables:

xk+1 = xk − γk∇̂f(xk)

since ∇̂f outputs random Rn-valued variables

• Stochastic gradient descent finds a realization of this sequence:

xk+1 = xk − γk∇̃f(xk)

where (xk)k∈N here is a realization which is different every time

• Sloppy in notation for when xk is random variable vs realization

• Can be efficient if realizations ∇̃f much cheaper than ∇f
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Stochastic gradients – Finite sum problems

• Consider finite sum problems of the form

minimize
x

1
N

(
N∑
i=1

fi(x)

)
︸ ︷︷ ︸

f(x)

where ( 1
N is for convenience and)

• all fi : Rn → R are βi-smooth (not necessarily convex)
• f : Rn → R is β-smooth (not necessarily convex)

• Training problems of this form, where sum over training data

• Stochastic gradient: select fi at random and take gradient step
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Single function stochastic gradient

• Let I be a {1, . . . , N}-valued random variable

• Let, as before, ∇̂f denote the stochastic gradient estimator

• Realization: let i be drawn from probability distribution of I

∇̃f(x) = ∇fi(x)

where we will use uniform probability distribution

pi = p(I = i) = 1
N

• Stochastic gradient is unbiased:

E[∇̂f(x)|x] =

N∑
i=1

pi∇fi(x) = 1
N

N∑
i=1

∇fi(x) = ∇f(x)
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Mini-batch stochastic gradient

• Let B be set of K-sample mini-batches to choose from:
• Example: 2-sample mini-batches and N = 4:

B = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

• Number of mini batches
(
N
K

)
, each item in

(
N−1
K−1

)
batches

• Let B be B-valued random variable
• Let, as before, ∇̂f denote stochastic gradient estimator
• Realization: let B be drawn from probability distribution of B

∇̃f(x) = 1
K

∑
i∈B
∇fi(x)

where we will use uniform probability distribution

pB = p(B = B) = 1
|B|

• Stochastic gradient is unbiased:

E∇̂f(x) = 1

(NK)

∑
B∈B

1
K

∑
i∈B

∇fi(x) =
(N−1
K−1)
(NK)K

N∑
i=1

∇fi(x) = 1
N

N∑
i=1

∇fi(x) = ∇f(x)
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Stochastic gradient descent for finite sum problems

• The algorithm, choose x0 ∈ Rn and iterate:

1. Sample a mini-batch Bk ∈ B of indices uniformly (prob. 1
|B| )

2. Run

xk+1 = xk − γk
|Bk|

∑
j∈Bk

∇fj(xk)

• Of course, can have B = {1, . . . , N} and sample only one function

• Gives realization of underlying stochastic process

• How about convergence?
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SGD – Example

Let c1 + c2 + c3 = 0

Solve minimizex( 1
2 (‖x− c1‖22 + ‖x− c2‖22 + ‖x− c3‖22) = 3

2‖x‖
2
2 + c

Stochastic gradient method with γk = 1/3

Levelsets of summands Levelset of sum
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SGD – Example

Let c1 + c2 + c3 = 0

Solve minimizex( 1
2 (‖x− c1‖22 + ‖x− c2‖22 + ‖x− c3‖22) = 3

2‖x‖
2
2 + c

Stochastic gradient method with γk = 1/k

Levelsets of summands Levelset of sum
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SGD – Example

Let c1 + c2 + c3 = 0

Solve minimizex( 1
2 (‖x− c1‖22 + ‖x− c2‖22 + ‖x− c3‖22) = 3

2‖x‖
2
2 + c

Gradient method with γk = 1/3

Levelsets of summands Levelset of sum

SGD will not converge for constant steps (unlike gradient method)
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Fixed step-size SGD does not converge to solution

• We can at most hope for finding point x̄ such that

0 = ∇f(x̄)

i.e., the proximal gradient fixed-point characterization

• Assume xk such that 0 = ∇f(xk)
• That 0 = ∇f(xk) does not imply 0 = ∇fi(xk) for all fi, hence

xk+1 = xk − γk∇fi(xk) 6= xk

i.e., will move away from prox-grad fixed-point for fixed γk > 0
• Need diminishing step-size rule to hope for convergence
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Polyak-Ruppert averaging

• Polyak-Ruppert averaging:
• Output average of iterations instead of last iteration

• Example: SGD with constant steps and its average sequence

SGD with constant step-size Average of SGD sequence
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Nonconvex setting – Assumptions

• We consider problems of the form

minimize f(x)

• Assumptions:

(i) f : Rn → R is β-smooth, for all x, y ∈ Rn:

f(y) ≤ f(x) +∇f(x)T (y − x) + β
2
‖y − x‖22

(ii) Stochastic gradient of f is unbiased: E[∇̂f(x)|x] = ∇f(x)

(iii) Variance is bounded: E[‖∇̂f(x)‖22|x] ≤ ‖∇f(x)‖22 +M2

(iv) No nonsmooth term, i.e., g = 0
(v) A minimizer exists and p? = minx f(x) is optimal value

(vi) Step-sizes satisfy
∑∞
k=1 γk =∞ and

∑∞
k=1 γ

2
k <∞

• Comments:
• (iii): variance is bounded by M2 since

E[‖∇̂f(x)‖22|x] = Var[‖∇̂f(x)‖2|x] + ‖E[∇̂f(x)|x]‖22
= Var[‖∇̂f(x)‖2|x] + ‖∇f(x)‖22

• (iii): analysis is slightly simpler if assuming E[‖∇̂f(x)‖22|x] ≤ G 59



Nonconvex setting – Analysis

• Upper bound on f in Assumption (i) gives

E[f(xk+1)|xk]

≤ E[f(xk) +∇f(xk)T (xk+1 − xk) + β
2
‖xk+1 − xk‖22|xk]

= f(xk)− γk∇f(xk)TE[∇̂f(xk)|xk] +
βγ2k
2

E[‖∇̂f(xk)‖22|xk]

≤ f(xk)− γk∇f(xk)T∇f(xk) +
βγ2k
2

(‖∇f(xk)‖22 +M2)

= f(xk)− γk(1− βγk
2

)‖∇f(xk)‖22 +
βγ2k
2
M2

• Let γk ≤ 1
β (true for large enough k since γk summable):

E[f(xk+1)|xk] ≤ f(xk)− γk
2 ‖∇f(xk)‖22 +

βγ2
k

2 M2

• Subtracting p? from both sides gives

E[f(xk+1)|xk]− p? ≤ f(xk)− p? − γk
2 ‖∇f(xk)‖22 +

βγ2
k

2 M2
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Total expectation

• Taking total expectation gives Lyapunov inequality

E[f(xk+1)]− p?︸ ︷︷ ︸
Vk+1

≤ E[f(xk)]− p?︸ ︷︷ ︸
Vk

− γk
2 E[‖∇f(xk)‖22]︸ ︷︷ ︸

Rk

+
βγ2
k

2 M2︸ ︷︷ ︸
Wk

• Consequences:
• Vk = E[f(xk)]− p? converges (not necessarily to 0)
• ∑k

l=0Rl ≤ V0 +
∑k
l=0Wk, which, when multiplied by 2 gives

k∑
l=0

γlE[‖∇f(xl)‖22] ≤ 2(f(x0)− p?) +
k∑
l=1

γ2
l βM

2
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Minimum gradient bound tradeoff

• The Lyapunov inequality tells us that

k∑
l=0

γlE[‖∇f(xl)‖22] ≤ 2(f(x0)− p?) +

k∑
l=1

γ2l βM
2

• Using that

min
l=0,...,k

E[‖∇f(xl)‖22]

k∑
l=0

γl ≤
k∑
l=0

γlE[‖∇f(xl)‖22]

we conclude that the minimum gradient norm satisfies

min
l=0,...,k

E[‖∇f(xl)‖22] ≤
2(f(x0)− p?) +

∑k
l=0 γ

2
l βM

2∑k
l=0 γl

where terms in the numerator:
• 2(f(x0)− p?) is due to initial suboptimality
• ∑k

l=0 γ
2
l βM

2 is due to noise in gradient estimates
(if M = 0, use γk = 1

β
to recover (proximal) gradient bound)

62



Minimum gradient convergence

• What conclusions can we draw from

min
l=0,...,k

E[‖∇f(xl)‖22] ≤
2(f(x0)− p?) +

∑k
l=0 γ

2
l βM

2∑k
l=0 γl

• Let C =
∑∞
l=0 γ

2
l <∞ (finite since (γ2k)k∈N summable) then

min
l=0,...,k

E[‖∇f(xl)‖22] ≤ 2(f(x0)− p?) + CβM2∑k
l=0 γl

→ 0

as k →∞ since (γk)k∈N is not summable

• Consequences:
• Smallest expected value of gradient norm square converges to 0
• We don’t know what happens with latest expected value
• Gradient converges to 0 for algorithm realizations almost surely
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Convexity and strong convexity

• If we in addition assume convexity, we can show

Rk ≤
‖x0 − x?‖22 +

∑k
l=0 γ

2
lM

2

2
∑k
l=0 γl

where

Rk = min
l=0,...,k

E[f(xk)− f(x?)] or Rk = E[f(x̄k)− f(x?)]

and x̄k is an average of previous iterates
• Smallest or average function value converges to f(x?)

• in expectation
• for algorithm realizations with probility 1
• no last iterate convergence bound

• Assumption: f smooth and strongly convex
• Proximal gradient method achieves linear convergence
• Stochastic gradient descent does not achieve linear convergence
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Convergence results

• Convergence in nonconvex and convex settings are:

Rk ≤
V0 +D

∑k
l=0 γ

2
l

b
∑k
l=0 γl

for different V0, D, and b and Rk
• Same dependance on step-size

• What step-sizes can we use and have convergence?
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Step-size requirements

• We shift indices k and l by one to start algorithm with k = 1

• Step-sizes:
∑∞
l=1 γ

2
l <∞ and

∑∞
l=1 γl =∞ make upper bound

Rk ≤
V1 +D

∑k
l=1 γ

2
l

b
∑k
l=1 γl

→ 0

as k →∞
• Step-size choices that satisfy assumptions:

• γk = c/k for some c > 0
• γk = c/kα for α ∈ (0.5, 1)

1/k0.6

1/k
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Estimating rates via integrals

• For convergence need to verify
∑∞
l=1 γl =∞ and

∑∞
l=1 γ

2
l <∞

• To estimate rates we need to estimate
∑k
l=1 γl and

∑k
l=1 γ

2
l

• Assume γl = φ(l) with decreasing and nonnegative φ : R+ → R+

• Then we can estimate using integrals∫ k

t=1

φ(t)dt+ φ(k) ≤
k∑
l=1

φ(l) ≤
∫ k

t=1

φ(t)dt+ φ(1)

• We can also remove φ(k) from lower bound to simplify
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Estimating rates – Example γk = c/k

• Let γk = φ(k) with φ(k) = c/k and estimate the sum

k∑
l=1

γl ≥
∫ k

t=1

c

t
dt = c[log(t)]kt=1 = c log(k)

(which diverges as k →∞ as required) and the finite sum

k∑
l=1

γ2l ≤
∫ k

t=1

c2

t2
dt+ φ(1)2 = c2[−1/t]kt=1 + c2 = c2(2− 1/k) ≤ 2c2

• We use these to arrive at the following rate when γk = c/k:

Rk ≤
V1 +D

∑k
l=1 γ

2
l

b
∑k
l=1 γl

≤ V1 + 2Dc2

bc log k
=
V1/c+ 2Dc

b log k

so we have O(1/ log k) convergence, which is slow

• The constant c trades off the two constant terms V1 and D
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Estimating rates – Example γk = c/kα

• Let γk = φ(k) with φ(k) = c/kα and α ∈ (0.5, 1) and estimate

k∑
l=1

γl ≥
∫ k

t=1

c

tα
dt = c[ t

1−α

1−α ]kt=1 = c
1−α (k1−α − 1)

(which diverges as k →∞ since slower than 1/k) and the sum

k∑
l=1

γ2l ≤
∫ k

t=1

c2

t2α
dt+ φ(1)2 = c2[ t

1−2α

1−2α ]kt=1 + c2 ≤ c2

2α−1 + c2 =: c2C

where the last inequality holds since α > 0.5
• We use these to arrive at the following rate when γk = c/kα:

Rk ≤
V1 +D

∑k
l=1 γ

2
l

b
∑k
l=1 γl

≤ (1− α)(V1/c+DCc)

b(k1−α − 1)

so we have O(1/k1−α) rate with α ∈ (0.5, 1)
• Rate improves with smaller α and 1/k1−α →

√
k as α→ 0.5
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Refining the step-size analysis

• Have not assumed
∑∞
l=1 γ

2
l finite for general convergence bound

Rk ≤
V1 +D

∑k
l=1 γ

2
l

b
∑k
l=1 γl

• We can divide the sum into two parts

Rk ≤
V1

b
∑k
l=1 γl

+
D

b
∑k
l=1 γl∑k
l=1 γ

2
l

• So Rk → 0 if
∑k
l=1 γl →∞ and

∑k
l=1 γl∑k
l=1 γ

2
l

→∞

(don’t need
∑k
l=1 γ

2
l <∞ for Rk → 0)
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Refined step-size analysis interpretation

• Let ψ1(k) =
∑k
l=1 γl and ψ2(k) =

∑k
l=1 γl∑k
l=1 γ

2
l

and restate bound:

Rk ≤
V1

bψ1(k)
+

D

bψ2(k)

• ψ1 decides how fast V1 (f(xk)− p? or ‖xk − x?‖2) is supressed

• ψ2 decides how fast D is supressed, where D can be
• G2 if assumption E[‖∇̂f(x)‖22|x] ≤ G2

• M2 if assumption E[‖∇̂f(x)‖22|x] ≤ ‖∇f(x)‖22 +M2

• There is a tradeoff between supressing these quantities

• For previous step-size choices, ψ1 is slower

• Will present step-sizes where ψ2 is slower

• Actual convergence very much dependent on constants V1 and D
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Estimating rates – Example γk = c/
√
k

• We know from before that

k∑
l=1

γl =

k∑
l=1

c/k0.5 ≥ 2c(
√
k − 1) ≈ 2c

√
k

and that the sum of step-sizes does not converge, but satisfies

k∑
l=1

γ2l ≤
k∑
l=1

c2/k = c2 log(k)

• Since
∑k
l=1 γl/

∑k
l=1 γ

2
l converges, also Rk converges as

Rk ≤
V1

2bc
√
k

+
Dc

b
√
k

log k

with rate O(log k/
√
k)
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Estimating rates – Example γk = c/kα

• Let now α ∈ (0, 0.5) for which γk is not square summable
• We know form before that

k∑
l=1

γl ≥ c
1−α (k1−α − 1)

and the squared sum does not converge, but satisfies

k∑
l=1

γ2l ≤ c2[ t
1−2α

1−2α ]kt=1 + c2 = c2

1−2α (k1−2α − 1) + c2 = c2

1−2α (k1−2α − 2α)

• We use these to arrive at the following rate when γk = c/kα:

Rk ≤
(1− α)V1

2bc(k1−α − 1)
+

(1− α)Dc

b(1− 2α) k1−α−1
k1−2α−2α

with rate (ignoring constant terms) is worst of

O(1/k1−α) and O(1/k1−α/k1−2α) = O(1/kα)

which is the latter since α ∈ (0, 0.5)
• Rate improves with larger α and kα →

√
k as α→ 0.5 73



How about fixed step-size

• Algorithms run in practice a finite number of iterations K

• What happens with fixed-step size scheme after K steps?

• We fix γk = γ̄ = θ/
√
K with θ > 0 to be the same for all k

• Our convergence result says:

RK ≤
V1 +D

∑K
l=1 γ

2
l

b
∑K
l=1 γl

=
V1 +DKγ̄2

bKγ̄
=
V1 +Dθ2

b
√
Kθ

• Comments:
• get

√
K convergence rate until iteration K

• but Rk will not converge to 0 as k →∞
• that γk = θ/

√
K holds for every fixed step-size for some θ

• actual convergence very much dependent on V1, D, and θ
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Rate comparison

Setting Gradient Stochastic gradient γk = 1/kα

α = 1 α ∈ (0, 5, 1) α = 0.5 α ∈ (0, 0.5)

Nonconvex O( 1
k
) O( 1

log k
) O( 1

k1−α
) O( log k√

k
) O( 1

kα
)

Convex O( 1
k
) O( 1

log k
) O( 1

k1−α
) O( log k√

k
) O( 1

kα
)

Strongly convex linear sublinear sublinear sublinear sublinear

• Stochastic gradient descent slower in all settings

• However, every iteration in stochastic gradient descent cheaper
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Finite sum comparison

• We consider

minimize

N∑
i=1

fi(x)

where N is large and use one fi for each stochastic gradient

• N iterations of stochastic gradient is at cost of 1 full gradient

• Progress after k epochs (stochastic) vs k iterations (full):

Setting Gradient Stochastic gradient γk = 1/kα

α = 1 α ∈ (0, 5, 1) α = 0.5 α ∈ (0, 0.5)

Nonconvex O( 1
k
) O( 1

logNk
) O( 1

(Nk)1−α
) O( logNk√

Nk
) O( 1

(Nk)α
)

Convex O( 1
k
) O( 1

logNk
) O( 1

(Nk)1−α
) O( logNk√

Nk
) O( 1

(Nk)α
)
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Finite sum comparison – Quantification

• Assume that finite sum of N equals 10 million summands

• Computational budget is that we run k = 10 iterations/epochs

• Replacing ordo expressions with numbers:

Setting Gradient Stochastic gradient γk = 1/kα

α = 1 α = 0.75 α = 0.5 α = 0.25

Nonconvex 0.1 0.054 0.01 0.0018 0.01

Convex 0.1 0.054 0.01 0.0018 0.01

• Stochastic gives better ordo-rates (but constants are worse)

• Significant difference within stochastic methods, γk = c√
k

best

• Actual performance depends a lot on relation between constants
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Thanks for your attention

• Most slides from Optimization for Learning at Lund University

https://canvas.education.lu.se/courses/7714

• Short “flipped classroom” style videos available for many topics

http://www.control.lth.se/fileadmin/control/

Education/EngineeringProgram/FRTN50/VideoPlatform/

VideoLecturePlatform.html
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