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Talk Message

• New algorithm called nonlinear forward-backward splitting

• Versatile algorithm with many special cases, e.g.:
• Forward-backward splitting
• Forward-backward-(half-)forward splitting – FB(H)F
• Chambolle-Pock
• Vu-Condat
• Douglas-Rachford, ADMM, and proximal ADMM
• Synchronous projective splitting
• Asymmetric forward-backward adjoint splitting (AFBA)
• A novel four operator splitting method

• FB(H)F is conservative special case

• FBF special case of backward method (without forward step)

• We propose new long-step FB(H)F variations

• Synchronous projective splitting is long-step FBF on specific
problem
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Nonlinear Forward-Backward Splitting (NOFOB)

• Solves maximal monotone inclusion problems of the form

0 ∈ Ax+ Cx,

A is maximally monotone and C is 1
β -cocoercive w.r.t. ‖ · ‖P

• Proposed algorithm (NOFOB)

x̂k := (Mk +A)−1(Mk − C)xk

Hk := {z : 〈Mkxk −Mkx̂k, z − x̂k〉 ≤ β
4 ‖xk − x̂k‖

2
P }

xk+1 := (1− θk)xk + θkΠS
Hk

(xk)

where
• Mk is single-valued and strongly monotone
• P, S are linear self-adjoint positive definite operators
• Hk is a halfspace that contains zer(A+ C) but not xk (strictly)
• ΠS

Hk
is projection onto Hk in metric ‖ · ‖S

• θk ∈ (ε, 2− ε) is relaxation parameter
• Algorithm is of separate and project type
• Steps explained in following slides
• First step requires one Mk application, Hk construction another
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Algorithm Steps

x̂k := (Mk +A)−1(Mk − C)xk

Hk := {z : 〈Mkxk −Mkx̂k, z − x̂k〉 ≤ β
4 ‖xk − x̂k‖

2
P }

xk+1 := (1− θk)xk + θkΠS
Hk

(xk)

1. Nonlinear forward-backward step1 on A+ C with kernel Mk

2. Construction of Hk that contains solution set but not xk

3. Projection from xk onto separating hyperplane

1Proposed at same time by Combettes‘ group without C, i.e., (Mk + A)−1 ◦ Mk called warped resolvent.
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Nonlinear FB Map – Special cases

• First step in algorithm is nonlinear FB evaluation

x̂k = (Mk +A)−1(Mk − C)xk

• Special cases:
• Mk = γ−1Id gives standard FB step:

x̂k = (γ−1Id +A)−1(γ−1Id− C)xk = (Id + γA)−1(xk − γCxk)

• Mk = ∇g with g strictly convex gives Bregman FB step
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Nonlinear FB Map – Properties

Let TFB := (M +A)−1(M − C)

(i) Fixed-point set of TFB equals zer(A+ C)

(ii) Define the affine function ψx for each x as:

ψx(z) := 〈Mx−MTFBx, z − TFBx〉 − β
2 ‖x− TFBx‖

2
P

Then
• ψx(z) ≤ 0 for all z ∈ zer(A+ C)
• ψx(x) > 0 for all points x 6∈ zer(A+ C)
• ψx(x) ≥ σ‖x− TFBx‖2 for some σ > 0 if Mk strongly monotone

Therefore, Hk in the second step of the algorithm:

Hk := {z : ψxk
(z) ≤ 0}

= {z : 〈Mkxk −Mkx̂k, z − x̂k〉 ≤ β
2 ‖xk − x̂k‖

2
P }

satisfies fixT kFB ⊆ Hk and xk 6∈ Hk, i.e., strict separation
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The Projection

The third (last) step is relaxed projection in metric ‖ · ‖S onto Hk

xk+1 := (1− θk)xk + θkΠS
Hk

(xk)

where

• projection is from previous point xk
• linear projection metric operator S is fixed

• θk is relaxation parameter
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Convergence

• Consequences of separate and project principle:
• ‖ · ‖S-distance to fixed-point set decreasing (Fejer monotone)
• Projection step length converges strongly to 0: xk+1 − xk → 0

• Convergence of algorithm if cuts are deep enough

• Weak convergence of method follows by standard arguments if

xk+1 − xk → 0 =⇒ T kFBxk − xk = x̂k − xk → 0

which holds if
• Mk strongly monotone (easy to show)
• Mk strictly monotone with some more assumptions and C = 0
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NOFOB with Explicit Projection

• Projection onto separating hyperplane Hk is

z = xk −
〈Mkxk −Mkx̂k, xk − x̂k〉 − β

4 ‖xk − x̂k‖
2
P

‖Mkxk −Mkx̂k‖2S−1

S−1(Mkxk −Mkx̂k).

• Inserting into algorithm gives equivalent, more explicit, method

x̂k := (Mk +A)−1(Mk − C)xk

µk :=
〈Mkxk −Mkx̂k, xk − x̂k〉 − β

4 ‖xk − x̂k‖
2
P

‖Mkxk −Mkx̂k‖2S−1

xk+1 := xk − θkµkS−1(Mkxk −Mkx̂k)

• Algorithm converges with µk replaced by any µ̂k ∈ (0, µk]
(equivalent to algorithm with smaller relaxation parameter)

9



Constant-µk Variation

• Suppose that there exists µ such that for all Mk and x, y ∈ H:

µ ≤
〈Mkx−Mky, x− y〉 − β

4 ‖x− y‖
2
P

‖Mkx−Mky‖2S−1

• µk in algorithm is exact local version with xk and x̂k:

µk :=
〈Mkxk −Mkx̂k, xk − x̂k〉 − β

4 ‖xk − x̂k‖
2
P

‖Mkxk −Mkx̂k‖2S−1

• Hence µ ∈ (0, µk] and conservative special case of method is:

x̂k := (Mk +A)−1(Mk − C)xk

xk+1 := xk − θkµS−1(Mkxk −Mkx̂k)

where µk replaced by µ (alt. actual relaxation parameter is θk
µ
µk

)

• If C = 0, µ is cocoercivity parameter that holds for all Mk
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Forward-Backward splitting

• Let Mk be linear symmetric and equal to projection kernel S

• Algorithm becomes (since µ = 1 can be chosen)

xk+1 := (1− θk)xk + θk(S +A)−1(S − C)xk

i.e., relaxed forward-backward splitting with kernel S

• If no relaxation, i.e., θk = 1, we get forward-backward splitting

xk+1 := (S +A)−1(S − C)xk

• Note that second application of Mk is not needed anymore!

• Projection point is result of FB step – x̂k
• Since FB is special case, has the following special cases:

• Chambolle-Pock
• Vu-Condat
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Symmetry and linearity of Mk

• If Mk symmetric and linear (and the same for all k)
• can avoid second application of Mk by letting S = Mk

• reason: projection point is given by x̂k that is already known
• projection is there, but already computed

• If Mk is not symmetric or not linear
• algorithm without projection can diverge
• need (e.g.) projection to guarantee convergence
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Special Cases
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Forward-Backward-Forward Splitting (FBF)

• Solves monotone inclusion problems of the form

0 ∈ Bx+Dx

where B +D is maximally monotone and D is L-Lipschitz

• Algorithm:

x̂k := (Id + γB)−1(Id− γD)xk

xk+1 := x̂k − γ(Dx̂k −Dxk)

• Algorithm needs second application of D, at x̂k
• Will show special case of NOFOB with C = 0
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Arriving at FBF from Resolvent Method (1/2)

• Nonlinear resolvent method with constant µk = µ

x̂k := (Mk +A)−1Mkxk

xk+1 := xk − θkµS−1(Mkxk −Mkx̂k)

• The trick: Let Mk = γ−1Id−D and A = B +D, then

x̂k = (Mk +A)−1Mkxk = (γ−1Id−D +B +D)−1(γ−1Id−D)

= (γ−1Id +B)−1(γ−1Id−D)

= (Id + γB)−1(Id− γD)

resolvent of B +D in Mk evaluated as forward-backward step:

(Mk +A)−1 ◦Mk = (Id + γB)−1 ◦ (Id− γD)
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Arriving at FBF from Resolvent Method (2/2)

• Nonlinear resolvent method

x̂k = (Id + γB)−1(Id− γD)xk

xk+1 := xk − θkµS−1((γ−1Id−D)xk − (γ−1Id−D)x̂k)

• Now use:
• Projection metric S = Id
• µ = 1/(L+ γ−1) since Mk is 1/(L+ γ−1)-cocoercive
• Relaxation θk = (L+ γ−1)/γ−1 ∈ (1, 2), for γ ∈ (0, 1

L
)

to get resulting algorithm (FBF):

x̂k := (Id + γB)−1(Id− γD)xk

xk+1 := x̂k − γ(Dx̂k −Dxk)
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Convergence of FBF

• Requirement: Mk = γ−1Id−D strongly monotone

• Satisfied if γ−1 − L > 0, where L Lipschitz constant of D

• Gives standard step-length requirement of FBF: γ ∈ (0, 1
L )

• Shows that relaxation θ = (L+ γ−1)/γ−1 ∈ (1, 2)
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Summary of FBF derivation

• FBF is specific nonlinear resolvent method

• µk is global instead of local cocoercivity constant ⇒ conservative

• Relaxation parameter fixed function of γ and L ⇒ restrictive
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A Long-step FBF

• We propose long-step FBF method (NOFOB with full projection)

x̂k := (Id + γB)−1(Id− γD)xk

µk :=
〈(Id− γD)xk − (Id− γD)x̂k, xk − x̂k〉
‖(Id− γD)xk − (Id− γD)x̂k‖2

xk+1 := xk − θkµk((Id− γD)xk − (Id− γD)x̂k)

• Essentially same computational cost as FBF, longer steps

• Local, not global, cocoercivity constant µ̂k of Mk = γ−1Id−D
• Convergence for γ ∈ (0, 1

L ) and θk ∈ (0, 2)

Variations:

• If D linear skew adjoint, all γ > 0 OK (as in standard FBF)

• Can make all step-sizes γ depend on iteration
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Projective splitting

• Solves monotone inclusion problems of the form

0 ∈
n−1∑
i=1

L∗iBi(Lix) +Bn(x)

• Primal dual condition (monotone+skew)

0 ∈


B−11 (w1)

...
B−1n−1(wn−1)

Bn(x)


︸ ︷︷ ︸

B(p)

+


−L1

...
−Ln−1

L∗1 · · · L∗n−1


︸ ︷︷ ︸

K


w1

...
wn−1
x


︸ ︷︷ ︸

p

• Full splitting method: resolvents on Bi, forward evaluations on Li
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Projective splitting – How it usually looks

Algorithm 1 Synchronous Projective Splitting Combettes, Eckstein 2018

1: Input: x0 ∈ H and wi,0 ∈ Gi for i = 1, . . . , n− 1
2: for k = 0, 1, . . . do
3: x̂k := Jτn,kBi

(xk − τn,k
∑n−1
i=1 L

∗
iwi,k)

4: ŷk := (τ−1n,kxk −
∑n−1
i=1 L

∗
iwi,k)− τ−1n,kx̂k

5: for i = 1, . . . , n− 1 do
6: v̂i,k := Jτi,kBi

(Lixk + τi,kwi,k)

7: ŵi,k := wi,k + τ−1i,k Lixk − τ
−1
i,k v̂i,k

8: end for
9: t∗k := ŷk +

∑n−1
i=1 L

∗
i ŵi,k

10: ti,k := v̂i,k − Lx̂k
11: µk :=

(
∑n−1

i=1 〈ti,k,wi,k〉−〈v̂i,k,ŵi,k〉)+〈t∗,xk〉−〈ŷk,x̂k〉∑n−1
i=1 ‖ti,k‖2+‖t∗k‖2

12: for i = 1, . . . , n− 1 do
13: wi,k+1 = wi,k − θkµkti,k
14: end for
15: xk+1 := xk − θkµkt∗k
16: end for
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Projective splitting in our framework

Apply NOFOB to primal dual condition 0 ∈ Bp+Kp with

• Kernel

Mk =


σ−11 Id

. . .

σ−1n−1Id
τ Id


︸ ︷︷ ︸

P

−


−L1

...
−Ln−1

L∗1 · · · L∗n−1


︸ ︷︷ ︸

K

that subtracts the skew symmetric operator K, and
• σi and τ become individual resolvent parameters for Bi

• Mk strongly monotone for all σi, τ > 0 – no step-size restrictions!

• A = B +K and C = 0 (NOFOB solves 0 ∈ Ax+ Cx)

• Induced projection metric norm
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Projective splitting in our framework

• Kernel
Mk = P −K

not symmetric, need to compute projection

• Backward-step in NOFOB on A = B +K (C = 0):

p̂k = (Mk +A)−1Mkpk

= (P +K +B −K)−1(P −K)pk = (P +B)−1(P −K)pk

same as in FBF

• Since full projection, algorithm is special case of long-step FBF
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Chambolle-Pock

• Solves monotone inclusion problems of the form

0 ∈ L∗B1(Lx) +B2(x)

via primal dual optimality condition (monotone+skew)

0 ∈
[
B−11 (w)
B2(x)

]
+

[
0 −L
L∗ 0

] [
w
x

]
• Well known to be resolvent method

• Cast in our algorithm format by setting (linear and symmetric)

Mk =

[
σ−1Id

τ−1Id

]
+

[
0 L
L∗ 0

]
,

S = Mk, gives µk = 1 (no restriction) and θk = 1

• Projection step redundant since Mk = S is symmetric!

• Standard step-size restriction from Mk strongly monotone
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Projective splitting vs Chambolle Pock

• If two summands, projective splitting and Chambolle Pock solves

0 ∈ L∗B1(Lx) +B2(x)

• Projective splitting with two summands is NOFOB with kernel

Mk =

[
σ−1Id

τ−1Id

]
+

[
0 L
−L∗ 0

]
not symmetric – projection needed, no step-size restrictions

• Chambolle-Pock is NOFOB with linear symmetric kernel

Mk =

[
σ−1Id

τ−1Id

]
+

[
0 L
L∗ 0

]
symmetry of Mk – no projection needed, but step-size restrictions

• Difference between Mk in the two algorithms is[
0 0
−2L∗ 0

]
(but projection kernels S differ more)
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A novel four operator splitting method

• Solves monotone inclusions

0 ∈ Bx+ Cx+Dx+Kx

where
• B +D maximally monotone, D Lipschitz
• C cocoercive
• K linear skew-adjoint

• Let A = B +D +K and Mk = Qk −D −K to get FB map

(Mk +A)−1(Mk − C) = (Qk +B)−1(Qk −D −K − C)

that is forward evaluation on D, K, and C, resolvent on B
• Then create separating hyperplane and project as in NOFOB
• Special cases

• K = C = 0: FBF
• K = 0: FBHF
• C = D = 0: Projective splitting, Chambolle Pock
• K = D = 0: FB, Vu-Condat
• D = 0, Qk PD+skew linear: AFBA
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NOFOB Variation

• NOFOB creates separating hyperplane then projects

• Variation: collect sequence of hyperplanes before projection

• Convergence analysis is identical
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Summary

• We have proposed nonlinear forward-backward splitting

• It has many special cases, have focused on
• FBF
• Chambolle-Pock
• Projective splitting
• Novel four operator splitting

• New interpretation of FBF as separate and project method
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Thank you

Preprint available on arXiv:1908.07449
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